The efficacy and safety of biological molecules in cancer therapy, such as peptides and small interfering RNAs (siRNAs), could be markedly increased if high concentrations could be achieved and amplified selectively in tumour tissues versus normal tissues after intravenous administration. This has not been achievable so far in humans. We hypothesized that a poxvirus, which evolved for blood-borne systemic spread in mammals, could be engineered for cancer-selective replication and used as a vehicle for the intravenous delivery and expression of transgenes in tumours. JX-594 is an oncolytic poxvirus engineered for replication, transgene expression and amplification in cancer cells harbouring activation of the epidermal growth factor receptor (EGFR)/Ras pathway, followed by cell lysis and anticancer immunity. Here we show in a clinical trial that JX-594 selectively infects, replicates and expresses transgene products in cancer tissue after intravenous infusion, in a dose-related fashion. Normal tissues were not affected clinically. This platform technology opens up the possibility of multifunctional products that selectively express high concentrations of several complementary therapeutic and imaging molecules in metastatic solid tumours in humans.
Purpose: The ErbB1and ErbB2 receptors have been implicated in prostate cancer progression, but less is known about the role and biology of other ErbB receptor family members in prostate cancer. The aim of this study was to analyze the expression and localization of ErbB3 in prostate tissues and prostate cancer cell lines. Experimental Design: Immunohistochemistry of ErbB3 was done on prostate cancer tissue sections from 143 patients and on a tissue microarray containing 390 cores of radical prostatectomy-derived specimens representing normal, prostatic intraepithelial neoplasia, and malignant tissues from 81 patients. ErbB3 subcellular localization was studied by Western blot analysis in LNCaP, 22Rv1, PC-3, and DU145 prostate cancer cell lines. Results: Immunohistochemistry analysis of prostate cancer tissues revealed that >90 % of prostate cancer tissues displayed cytoplasmic ErbB3 staining. Minimal ErbB3 nuclear staining was observed in normal prostate tissues and benign prostatic hyperplasia tissues; in contrast, ErbB3 was frequently localized in the nucleus of cancerous tissues. This nuclear localization was more frequent (P < 0.001) in hormone-refractory tissues (17 of 17, 100%) compared with hormone-sensitive samples (37 of 92, 40.2%). Additionally, in the tissue microarray, increased nuclear ErbB3 was associated with increasing Gleason grade. Interestingly,Western blot analysis of cytoplasmic and nuclear subcellular fractions showed that ErbB3 nuclear localization was more prevalent in hormone-sensitive prostate cancer cell lines (LNCaP and 22Rv1) compared with hormone-insensitive cell lines (PC-3 and DU145). Conclusions: ErbB3 nuclear localization discriminates normal from malignant prostate tissues and between tumors from hormone-sensitive versus hormone-refractory prostate cancer. ErbB3 nuclear staining seems to be associated with risk of disease progression. The high frequency of ErbB3 nuclear localization in hormone-refractory tissues indicates that ErbB3 warrants further study to understand its association with prostate cancer disease progression.Prostate cancer is the second leading cause of cancer death among North American men. In 2003, prostate cancer was the most frequently diagnosed cancer in men, accounting for 30% of newly diagnosed cases and 10% of deaths (1). Improving the treatment of prostate cancer will require early diagnosis and appropriate therapeutic decisions based on a better understanding of the biology of prostate cancer and the underlying molecular events that predict disease progression.The ErbB receptor family consists of four receptors: ErbB1/ epidermal growth factor receptor (EGFR), ErbB2/Her2, ErbB3, and ErbB4 (2, 3). ErbB signaling produces a diversity of responses generated by three levels of molecular interactions. The first is ligand-receptor binding, the second is homodimerization and heterodimerization, and the third is associated with distinct sets of cytoplasmic signaling proteins largely dependent on the nature of the active dimer formed (4). Previous stu...
Purpose: To assess the expression of proapoptotic NOXA and PUMA in prostate tissues and delineate their association with prostate cancer (PCa) recurrence. Experimental Design: Normal, prostatic intraepithelial neoplasia (PIN), hormone-sensitive (HS) PCa, and hormone-refractory (HR) PCa tissues were used to build tissue microarrays encompassing a total of 135 patients. Two observers assessed the intensity of NOXA and PUMA immunohistochemical staining using a composite color scale. One hundred and eighty recursive partitioning and regression tree (RPART) models were generated to predict biochemical recurrence (BCR) within HS cancer patients using NOXA, PUMA, and clinical parameters. Models were then ranked according to the integrated Brier score (IBS). Results: Increasing NOXA expression was associated with PCa progression, reaching the highest levels in HRPCa. Increased NOXA expression was observed in 68% of HS cancer patients and was predictive of BCR (LR = 8.64; P = 0.003). In contrast, PUMA expression was highest in HS cancer, and although 70% of HS cancer patients exhibited increased PUMA expression, PUMA alone could not predict the onset of BCR. Interestingly, the top-ranking RPART model generated [IBS = 0.107; 95% confidence interval (95% CI), 0.065-0.128] included surgical margin status and NOXA and PUMA expression, although recurrent prognostic classification schemes obtained in the top10 models favored a survival tree model containing margin status, NOXA expression, and preoperative prostate-specific antigen (PSA) (IBS = 0.114; 95% CI, 0.069-0.142). Conclusion: We conclude that NOXA and PUMA expression may be linked to PCa progression and propose further validation of a survival tree model including surgical margin status, NOXA expression, and preoperative PSA for predicting BCR.
The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 lifecycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2) 1-3 . The bioreporter assay is based on a Nanoluciferase complementation reporter, composed of two subunits, Large BiT and Small BiT, fused to the spike receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively. Using this bioreporter, we uncovered critical host and viral determinants of the interaction, including a role for glycosylation of asparagine residues within the RBD in mediating successful viral entry. We also demonstrate the importance of N-linked glycosylation to RBD’s antigenicity and immunogenicity. Our study demonstrates the versatility of our bioreporter in mapping key residues mediating viral entry as well as screening inhibitors of the ACE2-RBD interaction. Our findings point towards targeting RBD glycosylation for therapeutic and vaccine strategies against SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.