The Nordic Seas are a gateway to the Arctic Ocean, where Atlantic water undergoes a strong cooling during its transit. Here we investigate the heat balance of these regions in the high resolution Met Office Global Coupled Model GC3 with a 1/12_ grid. The GC3 model reproduces resolution Met Office Global Coupled Model GC3 with a 1/12_ grid. The GC3 model reproduces the contrasted ice conditions and ocean heat loss between the eastern and western regions of the Nordic Seas. In the west (Greenland and Iceland seas), the heat loss experienced by the ocean is stronger than the atmospheric heat gain, because of the cooling by ice melt. The latter is a major contribution to the heat loss over the path of the East Greenland Current and west of Svalbard. In the model, surface fluxes balance the convergence of heat in each of the eastern and western regions. The net east-west heat exchange, integrated from Fram Strait to Iceland, is relatively small: the westward heat transport of the Return Atlantic Current over Knipovich Ridge balances the eastward heat transport by the East Icelandic Current. Time fluctuations, including eddies, are a significant contribution to the net heat transports. The eddy flux represents about 20% of the total heat transport in Denmark Strait and across Knipovich Ridge. The coupled ocean-atmosphere-ice model may overestimate the heat imported from the Atlantic and exported to the Arctic by 10 or 15%. This confirms the tendency toward higher northward heat transports as model resolution is refined, which will impact scenarios of future climate.
The Arctic environment is changing, increasing the vulnerability of local communities and ecosystems, and impacting its socio-economic landscape. In this context, weather and climate prediction systems can be powerful tools to support strategic planning and decision-making at different time horizons. This article presents several success stories from the H2020 project APPLICATE on how to advance Arctic weather and seasonal climate prediction, synthesizing the key lessons learned throughout the project and providing recommendations for future model and forecast system development.
<p>Sea ice features a variety of obstacles to the flow of air and seawater at its top and bottom surfaces. Sea ice ridges, floe edges, ice surface roughness and melt ponds, lead to a form drag that interacts dynamically with the air-ice and ocean-ice fluxes of heat and momentum. In most climate models, surface fluxes of heat and momentum are calculated by bulk formulas using constant drag coefficients over sea ice, to reflect the mean surface roughness of the interfaces with the atmosphere and ocean. However, such constant drag coefficients do not account for the subgrid-scale variability of the sea ice surface roughness. To study the effect of form drag over sea ice on air-ice-ocean fluxes, we have implemented a formulation that estimates drag coefficients in ice-covered areas comprising the effect of sea ice ridges, floe edges and melt ponds, and ice surface skin (Tsamados et al., 2013) into the NEMO3.6-LIM3 global coupled ice-ocean model. In this work, we thoroughly analyse the impacts of this improvement on the model performance in both the Arctic and Antarctic. A particular attention is paid to the influence of this modification on the air-ice-ocean fluxes of heat and momentum, and the characteristics of the oceanic surface layers. We also formulate an assessment of the importance of variable drag coefficients over sea ice for the climate modelling community.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.