The penetration of Distributed Renewable Energy Sources (DRES) in the distribution grid is increasing considerably in the last years. This is one of the main causes that contributed to the growth of technical problems in both transmission and distribution systems. An effective solution to improve system security is to exploit the flexibility that can be provided by Distributed Energy Resources (DER), which are mostly located at the distribution grids. Their location combined with the lack of power flow coordination at the system operators interface creates difficulties in taking advantage of these flexible resources. This paper presents a methodology based on the solution of a set of optimization problems that estimate the flexibility ranges at the TSO-DSO boundary nodes. The estimation is performed while considering the grid technical constraints and a maximum cost that the user is willing to pay. The novelty behind this approach comes from the development of flexibility cost maps, which allow the visualization of the impact of DER flexibility on the operating point at the TSO-DSO interface. The results are compared with a sampling method and suggest that a higher accuracy in the TSO-DSO information exchange process can be achieved through this approach.
This paper presents a new model for optimal trading of wind power in day-ahead (DA) electricity markets under uncertainty in wind power and prices. The model considers settlement mechanisms in markets with locational marginal prices (LMPs), where wind power is not necessarily penalized from deviations between DA schedule and real-time (RT) dispatch. We use kernel density estimation to produce a probabilistic wind power forecast, whereas uncertainties in DA and RT prices are assumed to be Gaussian. Utility theory and conditional value at risk (CVAR) are used to represent the risk preferences of the wind power producers. The model is tested on real-world data from a large-scale wind farm in the United States. Optimal DA bids are derived under different assumptions for risk preferences and deviation penalty schemes. The results show that in the absence of a deviation penalty, the optimal bidding strategy is largely driven by price expectations. A deviation penalty brings the bid closer to the expected wind power forecast. Furthermore, the results illustrate that the proposed model can effectively control the trade-off between risk and return for wind power producers operating in volatile electricity markets.
The allocation of the system losses to suppliers and consumers is a challenging issue for the restructured electricity business. Meaningful loss allocation techniques have to be adopted to set up appropriate economic penalties or rewards. The allocation factors should depend on size, location, and time evolution of the resources connected to the system. In the presence of distributed generation, the variety of the power flows in distribution systems calls for adopting mechanisms able to discriminate among the contributions that increase or reduce the total losses. Some loss allocation techniques already developed in the literature have shown consistent behavior. However, their application requires computing a set of additional quantities with respect to those provided by the distribution system power flow solved with the backward/forward sweep approach. This paper presents a new circuit-based loss allocation technique, based on the decomposition of the branch currents, specifically developed for radial distribution systems with distributed generation. The proposed technique is simple and effective and is only based on the information provided by the network data and by the power flow solution. Examples of application are shown to confirm its effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.