Phosphorus (P) use in excess of crop needs may impact surface water quality and contribute to eutrophication. However, P loss from agricultural land to water has never been estimated at the Canadian national scale. In this paper, the risk of P desorption from Canadian agricultural land is assessed by the source component of the indicator of risk of water contamination by P (IROWC-P). The IROWC-P source component (P_source) characterized the mobilization potential of soluble P and integrated four models of P desorption by water for dominant agricultural soil series of Canada on the soil landscape of Canada polygon scale (1:1,000,000). The objective of our study was to describe and evaluate a standardized method for deriving the P_source component. The P_source was assessed over 5-yr intervals from 1981 to 2006 for scientifically based knowledge by relating annual P balance values, soil test P (STP) analyses, soil P saturation index, and Self-Davis water extractable P extraction values. Results show trends of soil P enrichment for most Canadian provinces over the 25-yr period but also an increased percentage of farmland classified above the water extractable soil P environmental threshold of 4 mg P kg. The Canadian Prairies and Ontario showed small P_source values and almost no farmland above the environmental threshold. Quebec and the Atlantic Provinces had P_source values that exceeded the environmental threshold in 2006; more than 33% of farmland is classified above the environmental threshold value.
Development of a method for estimating the likelihood of crack flow in Canadian agricultural soils at the landscape scale. Can. J. Soil Sci. 90: 129Á149. Indicators of risk of water contamination by agricultural pollutants are developed in Canada to assess sustainability of agriculture. Crack flow (CF), a key pathway for sub-surface contaminant transport, is part of the transport-hydrology algorithm used in two of these risk indicators. The objective was to develop a methodology for predicting the likelihood of CF in Canadian agricultural soils at the landscape scale. The algorithm considers soil clay content, crack development followed by a runoff event based on water budget, tile drainage, and crops. More than 40% of Canadian farmlands had moderate to very high likelihood of CF, mainly in Manitoba, Ontario and Quebec, due to frequent runoffs on cracked clay soils potentially contributing to groundwater contamination. In Ontario and Quebec, farmlands with high CF likelihood correspond to regions under intensive tile drainage, which increases the risk of lateral translocation of contaminants to surface water bodies. Besides being a component of risk indicators of water contamination by phosphorus and coliforms, the CF algorithm and maps can be used to identify areas at risk of subsurface water contamination. Best management practices, adapted to reduce CF can then be targeted to these areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.