Vitamin K is crucial for many physiological processes such as coagulation, energy metabolism, and arterial calcification prevention due to its involvement in the activation of several vitamin K-dependent proteins. During this activation, vitamin K is converted into vitamin K epoxide, which must be re-reduced by the VKORC1 enzyme. Various VKORC1 mutations have been described in humans. While these mutations have been widely associated with anticoagulant resistance, their association with a modification of vitamin K status due to a modification of the enzyme efficiency has never been considered. Using animal models with different Vkorc1 mutations receiving a standard diet or a menadione-deficient diet, we investigated this association by measuring different markers of the vitamin K status. Each mutation dramatically affected vitamin K recycling efficiency. This decrease in recycling was associated with a significant alteration of the vitamin K status, even when animals were fed a menadione-enriched diet suggesting a loss of vitamin K from the cycle due to the presence of the Vkorc1 mutation. This change in vitamin K status resulted in clinical modifications in mutated rats only when animals receive a limited vitamin K intake totally consistent with the capacity of each strain to recycle vitamin K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.