Several methods were employed in the Ardennian rivers (Belgium) to determine the depth of the active layer mobilized during floods and to evaluate the bedload discharge associated with these events. The use of scour chains has shown that the depth of the active layer is systematically less than the b‐axis of the average particle size (D50) of the elements which compose the surface layer of the riffles. This indicates that only a partial transport exists during low magnitude floods. The bedload discharge has been evaluated by combining data obtained using the scour chains technique and the distance covered by tracers. Quantities of sediment transported during frequent floods are relatively low (0·02 t km–2) due to the armour layer which protects the subsurface material. These low values are also related to the fact that the distance calculated for mobilized bedload only applies to tracers fitted with PIT (passive integrated transponder)‐tags (diameter > 20 mm), whereas part of the bedload discharge is composed of sand and fine gravel transported over greater distances than the pebbles. The break‐up of the armour layer was observed only once, for a decennial discharge. During this event, the bedload discharge increased considerably (2 t km–2). The use of sediment traps, data from dredging and a Helley–Smith sampler confirm the low bedload transport in Ardennian rivers in comparison to the bedload transport in other geomorphological contexts. This difference is explained by the presence of an armoured layer but also by the imbricated structures of flat bed elements which increase the resistance to the flow. Finally, the use of the old iron industry wastes allowed to quantify the thickness of the bed reworked over the past centuries. In the Lembrée River, the river‐bed contains slag elements up to a depth of about 50 cm, indicating that exceptional floods may rework the bed to a considerable depth. Copyright © 2012 John Wiley & Sons, Ltd.
ABSTRACT:The Ourthe River, in the south-east of Belgium, has a catchment area of 3500 km 2 and is one of the main tributaries of the Meuse River. In the Ourthe, most of the flood events (FE) occur during winter and about 50% of them are due to heavy rainfall events combined with an abrupt melting of the snowpack covering the Ardennes massif during winter. This study aims to determine whether trends in extreme hydroclimatic events generating floods can be detected over the last century in Belgium, where a global warming signal can be observed. Hydroclimatic conditions favourable to floods were reconstructed over 1959-2010 using the regional climate model MAR ('Modèle Atmosphérique Régional') forced by the ERA-Interim/ERA-40, the ERA-20C and the NCEP/NCAR-v1 reanalyses. Extreme run-off events, which could potentially generate floods, were detected using run-off caused by precipitation events and snowpack melting from the MAR model. In the validation process, the MAR-driven temperature, precipitation and snow depth were successfully compared to daily weather data over the period 2008-2014 for 20 stations in Belgium. MAR also showed its ability to detect up to 90% of the hydroclimatic conditions which effectively generated observed floods in the Ourthe River over the period 1974-2010. Conditions favourable to floods in the Ourthe River catchment present a negative trend over the period 1959-2010 as a result of a decrease in snow accumulation and a shortening of the snow season. This trend is expected to accelerate in a warmer climate. However, regarding the impact of the extreme precipitation events evolution on conditions favouring floods, the signal is less clear because the trends depend on the reanalysis used to force the MAR model.
In Alpine regions changes in seasonal climatic parameters, such as temperature, rainfall, and snow amount have already been observed. Specifically, in the South Tyrol area, meteorological observations indicate that temperatures are increasing and the number of snow days has generally diminished over time with perennial snow line now observed at higher elevations. Changes in rainfall have also been observed with more events associated with higher temperatures in the summer season. Natural hazards-mainly debris and mud flows, landslides, avalanches, rock falls, and (flash) floods-that affect this area every year, damaging population and infrastructures, are either weather or cryosphere-related. While these events have been recorded sporadically since the beginning of the 20th century, a systematic approach of their inventory has been done by local authorities since the 1990s. So far, Earth observation data has not been exploited to complete or complement existing inventories nor have they been used to investigate the influence of climate perturbation on potentially dangerous natural phenomena. The research presented here thus has three objectives: (i) analyse long time series of climate data and hazard occurrence in South Tyrol to examine if these records exhibit a coherent response of hazards to changes in climate; (ii) measure the spatio-temporal evolution of climatic and natural hazard events recorded, and (iii) explore potential relations between meteorological conditions and the hazard occurrence. In this context, in-situ and satellite-based climate data are exploited to study natural hazard triggers while the potential of Earth observation data is evaluated as a complement to the existing historical records of natural hazards. Specifically, Copernicus Sentinel-1 images are used to detect the spatio-temporal distribution of slow earth surface deformations and the results used for checking the completeness of the actual slow-moving landslide inventories. Hazard-related changes in the South tyrolian landscape have also been analysed in relation to particular meteorological events at a regional scale, assessing trends and anomalies. Results show that: (i) satellite data are very useful to complement the existing natural hazard inventories; (ii) in-situ and satellite-based climate records show similar patterns but differ due to regional versus local variability; (iii) even in a data-rich region such as the analysed area, the overall response of natural hazard occurrence, magnitude, and frequency to change in climate variables is difficult to decipher due to the presence of multiple triggers and locally driven ground responses. However, an increase in the average annual duration of rainfall events and debris flow occurrence can be observed. Mountains have been acknowledged as "sentinels of environmental change" because they have physical dynamics that are readily identifiable and respond more rapidly than other geographical entities to environmental change 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.