Existing vital sign monitoring systems in the neonatal intensive care unit (NICU) require multiple wires connected to rigid sensors with strongly adherent interfaces to the skin. We introduce a pair of ultrathin, soft, skin-like electronic devices whose coordinated, wireless operation reproduces the functionality of these traditional technologies but bypasses their intrinsic limitations. The enabling advances in engineering science include designs that support wireless, battery-free operation; real-time, in-sensor data analytics; time-synchronized, continuous data streaming; soft mechanics and gentle adhesive interfaces to the skin; and compatibility with visual inspection and with medical imaging techniques used in the NICU. Preliminary studies on neonates admitted to operating NICUs demonstrate performance comparable to the most advanced clinical-standard monitoring systems.
Low modulus, compliant systems of sensors, circuits and radios designed to intimately interface with the soft tissues of the human body are of growing interest, due to their emerging applications in continuous, clinical-quality health monitors and advanced, bioelectronic therapeutics. Although recent research establishes various materials and mechanics concepts for such technologies, all existing approaches involve simple, two-dimensional (2D) layouts in the constituent micro-components and interconnects. Here we introduce concepts in three-dimensional (3D) architectures that bypass important engineering constraints and performance limitations set by traditional, 2D designs. Specifically, open-mesh, 3D interconnect networks of helical microcoils formed by deterministic compressive buckling establish the basis for systems that can offer exceptional low modulus, elastic mechanics, in compact geometries, with active components and sophisticated levels of functionality. Coupled mechanical and electrical design approaches enable layout optimization, assembly processes and encapsulation schemes to yield 3D configurations that satisfy requirements in demanding, complex systems, such as wireless, skin-compatible electronic sensors.
Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices.
Standard of care management in neonatal and pediatric intensive care units (NICUs and PICUs) involve continuous monitoring of vital signs with hard-wired devices that adhere to the skin and, in certain instances, include catheter-loaded pressure sensors that insert into the arteries. These protocols involve risks for complications and impediments to clinical care and skin-to-skin contact between parent and child. Here we present a wireless, non-invasive technology that not only offers measurement equivalency to these management standards but also supports a range of important additional features (without limitations or shortcomings of existing approaches), supported by data from pilot clinical studies in the neonatal intensive care unit (NICU) and pediatric ICU (PICU). The combined capabilities of these platforms extend beyond clinical quality measurements of vital signs (heart rate, respiration rate, temperature and blood oxygenation) to include novel modalities for (1) tracking movements and changes in body orientation, (2) quantifying the physiological benefits of skin-to-skin care (e.g. Kangaroo care) for neonates, (3) capturing acoustic signatures of cardiac activity by directly measuring mechanical vibrations generated through the skin on the chest, (4) recording vocal biomarkers associated with tonality and temporal characteristics of crying impervious to confounding ambient noise, and (5) monitoring a reliable surrogate for systolic blood pressure. The results have potential to significantly enhance the quality of neonatal and pediatric critical care.In the United States, over 480,000 critically-ill infants and children enter intensive care units (ICUs) each year. Those less than one year of age suffer from the highest morbidity and mortality rates and therefore require the most intensive care 1,2 . These fragile patients include
This study describes a conductive ink formulation that exploits electrochemical sintering of Zn microparticles in aqueous solutions at room temperature. This material system has relevance to emerging classes of biologically and environmentally degradable electronic devices. The sintering process involves dissolution of a surface passivation layer of zinc oxide in CH COOH/H O and subsequent self-exchange of Zn and Zn at the Zn/H O interface. The chemical specificity associated with the Zn metal and the CH COOH/H O solution is critically important, as revealed by studies of other material combinations. The resulting electrochemistry establishes the basis for a remarkably simple procedure for printing highly conductive (3 × 10 S m ) features in degradable materials at ambient conditions over large areas, with key advantages over strategies based on liquid phase (fusion) sintering that requires both oxide-free metal surfaces and high temperature conditions. Demonstrations include printed magnetic loop antennas for near-field communication devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.