The α2,8-polysialyltransferases (polySTs) from embryonic chick brain catalyze the α2,8-specific polysialylation of endogenous neural cell adhesion molecules (N-CAMs). This posttranslation glycosylation decreases N-CAM-dependent cell adhesion and migration. The enzymatic properties of the membrane-bound form of the polyST activity was investigated in vitro. Our results show that the polyST activity was developmentally expressed with maximum specific activity appearing about 12 days after fertilization. This time shortly precedes maximal expression of the cognate polysialylated N-CAMs. Kinetic studies showed the K M and V max for CMPNeu5Ac were 133 µM and 0.13 µM/h, respectively, at pH 6.1, 33_C. CMP-Neu5Gc was not a donor substrate. PolyST activity was increased 5-to 6-fold in the presence of 10 mM MnCl 2, the preferred divalent cation, and 1 mM dithiothreitol (DTT). Heparin (3 kDa) was a noncompetitive inhibitor of polysialylation with a K i of 9 µM. Based on the affinity of the enzyme for heparin, the polyST activity was partially purified (∼30-fold) by heparin-Sepharose affinity chromatography, after differential solubilization with the zwitterionic detergent, CHAPS. DTT and chemical modification studies using the thiol-directed alkylating reagents, N-ethylmaleimide (NEM) and iodoacetamide (IAA), were used to show that at least one cysteinyl residue in the polyST was of critical importance for polysialylation, but of lesser importance for monosialylation, catalyzed by the α2,3-, α2,6-, and α2,8-monosialyltransferases (monoSTs). A sulfhydryl residue is implicated in chain initiation. Two important structural differences between the mono-and polySTs were revealed by sequence analyses. First, the polySTs contain heparin-like, positively charged amino acid clusters upstream of both sialylmotif L and S. Second, the polySTs contain a uniquely extended basic amino acid region (pI 11.6-12.0) of 31 residues immediately upstream of sialylmotif S. This extended, positively charged region may function in the processive mechanism of polymerization by allowing nascent polySia chains to remain bound to the polyST during the repetitive addition of each new Sia residue to the nonreducing termini of the growing chain. The importance of these studies is that they provide new information on the enzymatic basis of polysialylation. They also reveal that sulfhydryl residues and extended basic amino acid domains are two structural features unique to polysialylation, in contrast to monosialylation. Both may be important distinguishing features between the classes of distributive (monoSTs) and processive polysialyltransferases, which have not been previously described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.