ABSTRACT. We assess whether forests contribute indirectly to the dietary diversity of rural households by supporting diverse agricultural production systems. We applied our study in a landscape mosaic in Southern Ethiopia that was divided into three zones of increasing distance to Munesa Forest-"near," "intermediate," and "distant." A variety of research tools and methods, including remote sensing, participatory methods, farm survey, and yield assessment, were employed. Diets of households were more diverse in the near zone than in the other two zones (6.58 ± 1.21, 5.38 ± 1.02, and 4.41 ± 0.77 food groups consumed daily in the near, intermediate, and distant zones, respectively). This difference was not explained by food items collected from Munesa Forest but by biomass flows from the forest to farmlands. Munesa Forest contributed an average of 6.13 ± 2.90 tons of biomass per farm and per year to the farms in the near zone, in the form of feed and fuelwood. Feed from the forest allowed for larger livestock herds in the near zone compared with the other two zones, and fuelwood from the forest reduced the need to use cattle dung as fuel in the near zone compared with the two other zones. These two biomass flows contributed to the availability of more manure to farmers closer to the forest (908 ± 853 kg farm -1 , 771 ± 717 kg farm -1 , and 261 ± 487 kg farm -1 in the near, intermediate, and distant zones, respectively). In turn, increased manure enabled a larger percentage of farms to cultivate a diversified homegarden (87, 64, and 39% of farms in the near, intermediate, and distant zones, respectively). Homegardens and livestock products provided the greater contribution to household dietary diversity closer to the forest.
Despite global commitments to forest restoration, evidence of the pathways through which restoration creates social and ecological benefits remains limited. The objective of this paper is to provide empirical evidence to generate insights on the relationship between forest cover change and key provisioning ecosystem services and reforestation pathways. In Southern Ethiopia, three zones along a gradient of decreasing land cover complexity and tree cover were examined. The land cover change was assessed using satellite remote sensing and complemented ground‐based tree inventory. Perceptions of land cover and ecosystem services change and farmer responses were evaluated through three Participatory Rural Appraisals and eight Focus Group Discussions. Since the 1970s, a landscape shift from a forest‐grassland to a cropland mosaic was associated with increased food production, improved food security, and higher incomes. However, this shift also coincided with reductions in livestock, construction materials, fuelwood and water availability, prompting reforestation efforts designed to recover some of these lost ecosystem services. In particular, some households established Eucalyptus woodlots and encouraged natural regeneration. Natural trees, Eucalyptus woodlots, Ensete plantations (a type of plantain), and grasslands were positively associated with homestead proximity; thus, homestead establishment resulting from population increase in this predominately agricultural landscape appeared to foster a viable forest restoration pathway—that is, 'more people, more trees'. This is a reforestation pathway not previously described in the literature. A return to a more diverse agricultural landscape mosaic provided more secure and diversified income sources along with better provisioning of construction materials, fuelwood, and higher livestock numbers.
Staple crops are grown by millions of smallholder farmers yet estimating field-level yields over broad regions can be challenging. Furthermore, agricultural productivity can be impacted by nearby forests and trees. In an agricultural-forest mosaic in Southern Ethiopia, we used remote sensing imagery to identify and differentiate among dominant crops and assess the impact of nearby forest patches on wheat productivity. Using a suite of vegetation indices (VIs) derived from high spatial resolution (5-10 m) satellite imagery as a proxy for wheat productivity, we determined whether VIs were enhanced or suppressed with increasing distance to forest. We found that 5-10 m resolution satellite imagery was sufficient for identifying and differentiating among field boundaries and dominant crops, however, imagery from higher spatial resolution satellites would see increased benefits in accuracy. VIs increased by as much as 5% in areas of the fields within 30 m of forest edges compared to fields further from forests. Our results highlight potential benefits of a landscape approach for enhancing smallholder agricultural productivity in Southern Ethiopia. High spatial resolution imagery is a cost-effective method to map and identify promising landscape approaches in agricultural-forest mosaics dominated by smallholder farms. Thus, a landscape perspective aided by remote-sensing can provide a straightforward and cost-effective way to monitor crop productivity and track changes in agricultural productivity due to forest fragmentation and/or restoration. A landscape approach to achieving food security goals, particularly within the context of climate considerations, and should play a more prominent role in planning forest conservation and restoration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.