Zygotic gene expression in mice is delayed by a time‐dependent mechanism until the two‐cell stage in development. To investigate the basis of this ‘zygotic clock’, the firefly luciferase gene was injected into mouse embryos, and quantitative assays were used to monitor luciferase gene transcription and translation in individual embryos from single mothers. These studies confirmed, at the mRNA level, previous conclusions about the relative capacities of paternal and maternal pronuclei to transcribe genes, and the requirements for promoters and enhancers during zygotic gene activation. Furthermore, these studies revealed that fertilized mouse eggs can delay expression of zygotic genes by uncoupling translation from transcription. An RNA polymerase II‐dependent gene could be translated until zygotic gene expression began (a delay of up to 15 h after injection). The time course for nascent mRNA accumulation was biphasic, with the second phase occurring during zygotic gene expression. If the luciferase gene was injected after zygotic gene expression had begun, then translation was tightly linked to transcription. If the second phase of mRNA accumulation was repressed, then luciferase was not produced. Therefore, translation was linked to the accumulation of mRNA during the onset of zygotic gene expression. Similar biphasic time courses also were observed for RNA polymerase I‐ and III‐dependent transcription. These and other results reveal that the zygotic clock regulates the onset of both transcription and translation of zygotic genes.
The transition from a late 1-cell mouse embryo to a 4-cell embryo, the period when zygotic gene expression begins, is accompanied by an increasing ability to repress the activities of promoters and replication origins. Since this repression can be relieved by either butyrate or enhancers, it appears to be mediated through chromatin structure. Here we identify changes in the synthesis and modification of chromatin bound histones that are consistent with this hypothesis. Oocytes, which can repress promoter activity, synthesized a full complement of histones, and histone synthesis up to the early 2-cell stage originated from mRNA inherited from the oocyte. However, while histones H3 and H4 continued to be synthesized in early 1-cell embryos, synthesis of histones H2A, H2B and H1 (proteins required for chromatin condensation) was delayed until the late 1-cell stage, reaching their maximum rate in early 2-cell embryos. Moreover, histone H4 in both 1-cell and 2-cell embryos was predominantly diacetylated (a modification that facilitates transcription). Deacetylation towards the unacetylated and monoacetylated H4 population in fibroblasts began at the late 2-cell to 4-cell stage. Arresting development at the beginning of S-phase in 1-cell embryos prevented both the appearance of chromatin-mediated repression of transcription in paternal pronuclei and synthesis of new histones. These changes correlated with the establishment of chromatin-mediated repression during formation of a 2-cell embryo, and the increase in repression from the 2-cell to 4-cell stage as linker histone H1 accumulates and core histones are deacetylated.
The pluripotent human embryonal carcinoma (EC) cell line NTERA-2 provides a useful tool for investigating cell differentiation in a way that is pertinent to the development of the early human embryo. The major immediate early (MIE) gene of human cytomegalovirus (HCMV), which is not transcribed in undifferentiated NTERA-2 EC cells but is transcribed in their differentiated derivatives, offers a model with which to study the developmental regulation of gene activity during the differentiation of these cells. We have investigated the regulatory activity of the cAMP response elements (CRE) and the activation protein (API) site found within several repeated 19-base-pair (bp) elements from the HCMV MIE promoter, and the developmental regulation of nuclear DNA-binding factors that interact with these sites. The 19-bp CRE but not the APl site is responsive to cAMP in undifferentiated NTERA-2 EC and its activity is enhanced upon differentiation. Nuclear proteins of the CREB, Fos, and Jun families bind to these sites, but, surprisingly, their levels only show limited regulation during NTERA-2 differentiation. This contrasts with results obtained with murine EC cells. However, additional and apparently novel proteins with molecular weights between 80000 and 90000, and binding specificities for both CRE and API sites, were detected in undifferentiated EC cells. The activity of these proteins decreased markedly after differentiation, indicating their involvement in negative regulation of the CRE/APl-like site in undifferentiated EC cells. This suggests novel members able to interact via leucine zippers with other members of the Jun-Fos-CREB family of DNA binding proteins that are also involved in this regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.