N-methyladenosine RNA (mA) is a prevalent messenger RNA modification in vertebrates. Although its functions in the regulation of post-transcriptional gene expression are beginning to be unveiled, the precise roles of mA during development of complex organisms remain unclear. Here we carry out a comprehensive molecular and physiological characterization of the individual components of the methyltransferase complex, as well as of the YTH domain-containing nuclear reader protein in Drosophila melanogaster. We identify the member of the split ends protein family, Spenito, as a novel bona fide subunit of the methyltransferase complex. We further demonstrate important roles of this complex in neuronal functions and sex determination, and implicate the nuclear YT521-B protein as a main mA effector in these processes. Altogether, our work substantially extends our knowledge of mA biology, demonstrating the crucial functions of this modification in fundamental processes within the context of the whole animal.
-methyladenosine (mA) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. mA is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of mA methyltransferase complex components in and mice. Like other components of this complex, Flacc controls mA levels and is involved in sex determination in We demonstrate that Flacc promotes mA deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the mA machinery.
Modifications in mRNA constitute ancient mechanisms to regulate gene expression post-transcriptionally. N-methyladenosine (mA) is the most prominent mRNA modification, and is installed by a large methyltransferase complex (the mA 'writer'), not only specifically bound by RNA-binding proteins (the mA 'readers'), but also removed by demethylases (the mA 'erasers'). mA mRNA modifications have been linked to regulation at multiple steps in mRNA processing. In analogy to the regulation of gene expression by miRNAs, we propose that the main function of mA is post-transcriptional fine-tuning of gene expression. In contrast to miRNA regulation, which mostly reduces gene expression, we argue that mA provides a fast mean to post-transcriptionally maximize gene expression. Additionally, mA appears to have a second function during developmental transitions by targeting mA-marked transcripts for degradation.
RNA interference (RNAi) designates the multistep process by which double-stranded RNA induces the silencing of homologous endogenous genes. Some aspects of RNAi appear to be conserved throughout evolution, including the processing of trigger dsRNAs into small 21-23-bp siRNAs and their use to guide the degradation of complementary mRNAs. Two remarkable features of RNAi were uncovered in plants and Caenorhabditid elegans. First, RNA-dependent RNA polymerase activities allow the synthesis of siRNA complementary to sequences upstream of or downstream from the initial trigger region in the target mRNA, leading to a transitive RNAi with sequences that had not been initially targeted. Secondly, systemic RNAi may cause the targeting of gene silencing in one tissue to spread to other tissues. Using transgenes expressing dsRNA, we investigated whether transitive and systemic RNAi occur in Drosophila. DsRNA-producing transgenes targeted RNAi to specific regions of alternative mRNA species of one gene without transitive effect directed to sequences downstream from or upstream of the initial trigger region. Moreover, specific expression of a dsRNA, using either cell-specific GAL4 drivers or random clonal activation of a GAL4 driver, mediated a cell-autonomous RNAi. Together, our results provide evidence that transitive and systemic aspects of RNAi are not conserved in Drosophila and demonstrate that dsRNA-producing transgenes allow powerful reverse genetic approaches to be conducted in this model organism, by knocking down gene functions at the resolution of a single-cell type and of a single isoform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.