Tolerogenic nanoparticles (NPs) are rapidly being developed as specific immunotherapies to treat autoimmune disease. However, many NP-based therapies conjugate antigen (Ag) directly to the NP posing safety concerns due to antibody binding or require the co-delivery of immunosuppressants to induce tolerance. Here, we developed Ag encapsulated NPs comprised of poly(lactide-co-glycolide) [PLG(Ag)] and investigated the mechanism of action for Ag-specific tolerance induction in an autoimmune model of T helper type 1/17 dysfunction – relapse-remitting experimental autoimmune encephalomyelitis (R-EAE). PLG(Ag) completely abrogated disease induction in an organ specific manner, where the spleen was dispensable for tolerance induction. PLG(Ag) delivered intravenously distributed to the liver, associated with macrophages, and recruited Ag-specific T cells. Furthermore, programmed death ligand 1 (PD-L1) was increased on Ag presenting cells and PD-1 blockade lessened tolerance induction. The robust promotion of tolerance by PLG(Ag) without co-delivery of immunosuppressive drugs, suggests that these NPs effectively deliver antigen to endogenous tolerogenic pathways.
No effective therapies currently exist for chronic rhinosinusitis (CRS), a persistent inflammatory condition characterized by the accumulation of highly viscoelastic mucus (CRSM) in the sinuses. Nanoparticle therapeutics offer promise for localized therapies for CRS, but must penetrate CRSM in order to avoid washout during sinus cleansing and to reach underlying epithelial cells. Prior research has not established whether nanoparticles can penetrate the tenacious CRSM barrier, or instead become trapped. Here, we first measured the diffusion rates of polystyrene nanoparticles and the same nanoparticles modified with muco-inert polyethylene glycol (PEG) coatings in fresh, minimally perturbed CRSM collected during endoscopic sinus surgery from CRS patients with and without nasal polyp. We found that uncoated polystyrene particles, previously shown to be mucoadhesive, were immobilized in all CRSM samples tested. In contrast, densely PEGylated particles as large as 200 nm were able to readily penetrate all CRSM samples from patients with CRS alone, and nearly half of CRSM samples from patients with nasal polyp. Based on the mobility of different sized PEGylated particles, we estimate the average pore size of fresh CRSM to be at least 150 ± 50 nm. Guided by these studies, we formulated mucus-penetrating particles (MPP) composed of PLGA and Pluronics, two materials with a long history of safety and use in humans. We showed that biodegradable MPP are capable of rapidly penetrating CRSM at average speeds up to only 20-fold slower than their theoretical speeds in water. Our findings strongly support the development of mucus-penetrating nanomedicines for the treatment of CRS.
The multi-kinase inhibitor (MKI) sorafenib can be an effective palliative therapy for patients with hepatocellular carcinoma (HCC). However, patient tolerance is often poor due to common systemic side effects following oral administration. Local transcatheter delivery of sorafenib to liver tumors has the potential to reduce systemic toxicities while increasing the dose delivered to targeted tumors. We developed sorafenib-eluting PLG microspheres for delivery by intra-hepatic transcatheter infusion in an orthotropic rodent HCC model. The particles also encapsulated iron-oxide nanoparticles permitting magnetic resonance imaging (MRI) of intra-hepatic biodistributions. The PLG microspheres (diameter ≈1 μm) were loaded with 18.6% (w/w) sorafenib and 0.54% (w/w) ferrofluid and 65.2% of the sorafenib was released within 72 hours of media exposure. In vitro studies demonstrated significant reductions in HCC cell proliferation with increasing doses of the sorafenib-eluting microspheres, where the estimated IC50 was a 29 ug/mL dose of microspheres. During in vivo studies, MRI permitted intra-procedural visualization of intra-hepatic microsphere delivery. At 72 hours after microsphere infusion, microvessel density was significantly reduced in tumors treated with the sorafenib-eluting microspheres compared to both sham control tumors (by 35%) and controls (by 30%). These PLG microspheres offer the potential to increase the efficacy of molecularly targeted MKI therapies while reducing systemic exposures via selective catheter-directed delivery to HCC.
Magnetic resonance imaging (MRI)-visible amonafide-eluting alginate microspheres were developed for targeted arterial-infusion chemotherapy. These alginate microspheres were synthesized using a highly efficient microfluidic gelation process. The microspheres included magnetic clusters formed by USPIO nanoparticles to permit MRI and a sustained drug-release profile. The biocompatibility, MR imaging properties and amonafide release kinetics of these microspheres were investigated during in vitro studies. A xenograft rodent model was used to demonstrate the feasibility to deliver these microspheres to liver tumors using hepatic transcatheter intra-arterial infusions and potential to visualize the intra-hepatic delivery of these microspheres to both liver tumor and normal tissues with MRI immediately after infusion. This approach offer the potential for catheter-directed drug delivery to liver tumors for reduced systemic toxicity and superior therapeutic outcomes.
Transcatheter hepatic intra-arterial (IA) injection has been considered as an effective targeted delivery technique for hepatocellular carcinoma (HCC). Recently, drug-eluting beads (DEB) were developed for transcatheter IA delivery to HCC. However, the conventional DEB has offered relatively modest survival benefits. It can be difficult to control drug loading/release from DEB and to monitor selective delivery to the targeted tumors. Embolized DEBs in hepatic arteries frequently induce hypoxic and low pH conditions, promoting cancer cell growth. In this study, an acidic pH-triggered drug-eluting nanocomposite (pH-DEN) including superparamagnetic iron oxide nanocubes and pH-responsive synthetic peptides with lipid tails [octadecylamine–p(API-L-Asp)10] was developed for magnetic resonance imaging (MRI)-monitored transcatheter delivery of sorafenib (the only FDA-approved systemic therapy for liver cancer) to HCC. The synthesized sorafenib-loaded pH-DENs exhibited distinct pH-triggered drug release behavior at acidic pH levels and highly sensitive MR contrast effects. In an orthotopic HCC rat model, successful hepatic IA delivery and distribution of sorafenib-loaded pH-DEN was confirmed with MRI. IA-delivered sorafenib-loaded pH-DENs elicited significant tumor growth inhibition in a rodent HCC model. These results indicate that the sorafenib–pH-DENs platform has the potential to be used as an advanced tool for liver-directed IA treatment of unresectable HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.