Chronic hepatitis B virus (HBV) infection has been associated with alterations in lipid metabolism. Moreover, the Na 1 -taurocholate cotransporting polypeptide (NTCP), responsible for bile acid (BA) uptake into hepatocytes, was identified as the functional cellular receptor mediating HBV entry. The aim of the study was to determine whether HBV alters the liver metabolic profile by employing HBV-infected and uninfected human liver chimeric mice. Humanized urokinase plasminogen activator/severe combined immunodeficiency mice were used to establish chronic HBV infection. Gene expression profiles were determined by real-time polymerase chain reaction using primers specifically recognizing transcripts of either human or murine origin. Liver biopsy samples obtained from HBVchronic individuals were used to validate changes determined in mice. Besides modest changes in lipid metabolism, HBV-infected mice displayed a significant enhancement of human cholesterol 7a-hydroxylase (human [h]CYP7A1; median 12-fold induction; P < 0.0001), the rate-limiting enzyme promoting the conversion of cholesterol to BAs, and of genes involved in transcriptional regulation, biosynthesis, and uptake of cholesterol (human sterol-regulatory element-binding protein 2, human 3-hydroxy-3-methylglutarylcoenzyme A reductase, and human low-density lipoprotein receptor), compared to uninfected controls. Significant hCYP7A1 induction and reduction of human small heterodimer partner, the corepressor of hCYP7A1 transcription, was also confirmed in liver biopsies from HBV-infected patients. Notably, administration of Myrcludex-B, an entry inhibitor derived from the pre-S1 domain of the HBV envelope, provoked a comparable murine CYP7A1 induction in uninfected mice, thus designating the pre-S1 domain as the viral component triggering such metabolic alterations. Conclusion: Binding of HBV to NTCP limits its function, thus promoting compensatory BA synthesis and cholesterol provision. The intimate link determined between HBV and liver metabolism underlines the importance to exploit further metabolic pathways, as well as possible NTCP-related viraldrug interactions.
Primary rat hepatocytes are a widely used experimental model to estimate drug metabolism and toxicity. In currently used two-dimensional (2D) cell culture systems, typical problems like morphological changes and the loss of liver cell-specific functions occur. We hypothesize that the use of polymer scaffolds could overcome these problems and support the establishment of three-dimensional (3D) culture systems in pharmaceutical research. Isolated primary rat hepatocytes were cultured on collagen-coated nanofibrous scaffolds for 7 days. Cell loading efficiency was quantified via DNA content measurement. Cell viability and presence of liver-cell-specific functions (albumin secretion, glycogen storage capacity) were evaluated. The activity of liver-specific factors was analyzed by immunofluorescent staining. RNA was isolated to establish quantitative real-time PCR. Our results indicate that primary rat hepatocytes cultured on nanofibrous scaffolds revealed high viability and well-preserved glycogen storage. Albumin secretion was existent during the entire culture period. Hepatocytes remain HNF-4 positive, indicating highly preserved cell differentiation. Aggregated hepatocytes re-established positive signaling for Connexin 32, a marker for differentiated hepatocyte interaction. ZO-1-positive hepatocytes were detected indicating formation of tight junctions. Expression of cytochrome isoenzymes was inducible. Altogether the data suggest that nanofibrous scaffolds provide a good in vitro microenvironment for neo tissue regeneration of primary rat hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.