Commercial enzymatic processes require robust catalysts able to withstand elevated temperatures and long incubations, conditions under which most native enzymes perform poorly. Incremental increases in thermostability can be achieved by repeated rounds of mutagenesis and screening, but general strategies are needed for designing highly thermostable enzymes a priori. Here we show that enzymes can be created that can withstand temperatures ~ 30 °C higher and incubations ≥ 100 times longer than extant forms in a single step using ancestral reconstruction. We exemplify the approach with the first ancestral resurrections of two unrelated enzyme families: cytochrome P450 monooxygenases, that stereo-and regioselectively functionalize un-activated C-H bonds in pharmaceutical, flavour, fragrance and other fine chemical syntheses; and ketol acid reductoisomerases, used to make butanol-based biofuels. This shows thermostability can be designed into proteins using sequence data alone, potentially enhancing the economic feasibility of any process or product requiring a highly stable protein.
The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways. 1.Introduction to P450s 2.Chemistry of P450 enzymes 3.Bacterial biosynthesis pathways involving P450s 3.1Terpene metabolism 3.1. Battersby (1925Battersby ( -2018 to the molecular understanding of biosynthesis over the course of their careers.
Carboxylesterases are enzymes that catalyze the hydrolysis of a wide range of ester-containing endogenous and xenobiotic compounds. Although the use of pyrethroids is increasing, the specific enzymes involved in the hydrolysis of these insecticides have yet to be identified. A pyrethroid-hydrolyzing enzyme was partially purified from mouse liver microsomes using a fluorescent reporter similar in structure to cypermethrin . Compared with their cis-counterparts, trans-permethrin and cypermethrin were hydrolyzed 22-and 4-fold faster, respectively. Of the four fenvalerate isomers the (2R)(␣R)-isomer was hydrolyzed at least 1 order of magnitude faster than any other isomer. However, it is unlikely that this enzyme accounts for the total pyrethroid hydrolysis in the microsomes because both isoelectrofocusing and native PAGE indicate the presence of a second region of cypermethrin-metabolizing enzymes. A second carboxylesterase gene (NCBI accession number NM_133960), isolated during a cDNA mouse liver library screening, was also found to hydrolyze pyrethroids. Both these enzymes could be used as preliminary tools in establishing the relative toxicity of new pyrethroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.