Despite an obviously broad acceptance of living wills especially in the elderly population, there are hardly any consequences on the daily patient care in an emergency department by now, as hardly any patient has hers or his living will on hand at admission. We therefore see the need for further educational work to guarantee that living wills get adequate priority in patient care at emergency departments.
Introduction: Although chronic pulmonary hypertension and right ventricular (RV) function carry important functional and prognostic implications in idiopathic dilated cardiomyopathy (IDC), little information on RV muscle mass (RVMM) and its determinants has been published.Methods: Our study comprised thirty-five consecutive patients with IDC, left ventricular (LV) ejection fraction <40% and NYHA class ≥2. Hemodynamic data and parameters on LV and RV geometry were derived from right heart catheterisation and cardiac magnetic resonance imaging.Results: RVMM was normalized to body size using a common linear, body surface area based approach (RVMMI) and by an allometric index (RVMM-AI) incorporating adjustment for age, height and weight. Stepwise multiple regression analysis revealed that pulmonary artery pressure and left ventricular muscle mass were independent predictors of RVMM-AI. The interventricular mass ratio of RV and LV mass (IVRM) was closely related to RVMM (r = 0.79, p < 0.001) and total muscle mass (r = 0.39, p < 0.02). However, there was no significant relationship between LVMM and IVMR (r = 0.17, p = 0.32).Conclusion: Our data suggest that an increase in RV mass in IDC may be explained by two mechanisms: First, as a consequence of the myopathic process itself resulting in a balanced hypertrophy of both ventricles. Second, due to the chamber specific burden of pulmonary artery pressure rise, resulting in unbalanced RV hypertrophy.
Background: Early assessment and aggressive hemodynamic treatment have been shown to increase the survival of patients in septic shock. Current and past sepsis guidelines recommend a resuscitation protocol including central venous pressure (CVP), mean arterial blood pressure (MAP), urine output and central venous oxygen saturation (ScvO2) for resuscitation within the first six hours. Currently, the established severity score systems like APACHE II score, SOFA score or SAPS II score predict the outcome of critically ill patients on the bases of variables obtained only after the first 24 hours. The present study aims to evaluate the risk of short-term mortality for patients with septic shock by the earliest possible assessment of hemodynamic parameters and cardiac biomarkers as well as their role for the prediction of the adverse outcome.Methods: 52 consecutive patients treated for septic shock in the intensive care unit of one centre (Marien Hospital Herne, Ruhr University Bochum, Germany) were prospectively enrolled in this study. Hemodynamic parameters (MAP, CVP, ScvO2, left ventricular ejection fraction, Hematocrit) and cardiac biomarkers (Troponin I) at the ICU admission were evaluated in regard to their influence on mortality. The primary endpoint was all-cause mortality within 28 days after the admission.Results: A total of 52 patients (31 male, 21 female) with a mean age of 71.4±8.5 years and a mean APACHE II score of 37.0±7.6 were enrolled in the study. 28 patients reached the primary endpoint (mortality 54%). Patients presenting with hypotension (MAP <65 mmHg) at ICU admission had significantly higher rates of 28-day mortality as compared with the group of patients without hypotension (28-day mortality rate 74 % vs. 32 %, p<0.01). Furthermore, the patients in the hypotension present group had significantly higher lactate concentration (p=0.002), higher serum creatinin (p=0.04), higher NTproBNP (p=0.03) and after the first 24 hours higher APACHE II scores (p=0.04). A MAP <65 mmHg was the only hemodynamic parameter significantly predicting the primary endpoint (OR: 4.1, CI: 1.1 - 14.8, p=0.008), whereas the remaining hemodynamic variables CVP, ScvO2, Hematocrit, Troponin I and left ventricular ejection fraction (LVEF) seemed to have no influence on survival. Besides, non-survivors had a significantly higher age (74.1±9.0 vs. 68.4±6.9, p=0.01). If hypotension coincided with an age ≥72 years, the 28-day mortality rate escalated to 88%.Conclusions: In our study, we identified a risk group with an exceedingly high mortality rate: the patients with an age ≥72 years and presenting with hypotension (MAP <65 mmHg). These data can be easily obtained at the time of the very first patient contact. As a result, an aggressive and a more effective treatment can be initiated within the first minutes of the primary care, possibly reducing organ failure and short-term mortality in this risk group.
Objectives and Background: Despite a generally broad use of vascular closure devices (VCDs), it remains unclear whether they can also be used in victims from out-of-hospital cardiac arrest (OHCA) treated with mild therapeutic hypothermia (MTH).Methods: All victims from OHCA who received immediate coronary angiography after OHCA between January 1st 2008 and December 31st 2013 were included in this study. The operator decided to either use a VCD (Angio-Seal™) or manual compression for femoral artery puncture. The decision to induce MTH was based on the clinical circumstances.Results: 76 patients were included in this study, 46 (60.5%) men and 30 (39.5%) women with a mean age of 64.2 ± 12.8 years. VCDs were used in 26 patients (34.2%), and 48 patients (63.2%) were treated with MTH. While there were significantly more overall vascular complications in the group of patients treated with MTH (12.5% versus 0.0%; p=0.05), vascular complications were similar between patients with VCD or manual compression, regardless of whether or not they were treated with MTH.Conclusion: In our study, the overall rate of vascular complications related to coronary angiography was higher in patients treated with mild therapeutic hypothermia, but was not affected by the application of a vascular closure device. Therefore, our data suggest that the use of VCDs in victims from OHCA might be feasible and safe in patients treated with MTH as well, at least if the decision to use them is individually carefully determined.
Introduction: Little is known about discrepancies between patients who present with or without STEMI following out-of-hospital cardiac arrest (OHCA). Material and Methods: All patients with OHCA who were admitted to our hospital between January 1st 2008 and December 31st 2013 were classified according to their initial laboratory and electrocardiographic findings into STEMI, NSTEMI or no ACS. Results: Overall, 147 patients [32 STEMI (21.8%), 28 NSTEMI (19.0%) and 87 no ACS (59.2%)] were included with a mean age of 63.7 ± 13.3 years; there were 84 men (57.1%) and 63 (42.9%) women. Of these, 63 patients (51.7%) received coronary angiography [29 STEMI (90.6%), 9 NSTEMI (32.1%) and 38 no ACS (43.7%)] showing a high prevalence of coronary artery disease (CAD) [28 STEMI (96.6%), 9 NSTEMI (100.0%) and 26 no ACS (68.4%)] requiring percutaneous coronary intervention (PCI) in 52 cases [28 STEMI (96.6%), 8 NSTEMI (88.9%) and 16 no ACS (42.1%)]. Discussion: Coronary angiography immediately after hospital admission is feasible if all are prepared for potential further resuscitation efforts during cardiac catheterization. Primary focus on haemodynamic stabilisation may reduce the rates of coronary angiographies in patients following OHCA. Altogether, our data support the call for immediate coronary angiography in all patients following OHCA irrespective of their initial laboratory or electrocardiographic findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.