Neutrophil's responses to G protein-coupled chemoattractants are highly dependent on store-operated calcium (Ca(2+)) entry (SOCE). Platelet-activating factor (PAF), a primary chemoattractant, simultaneously increases cytosolic-free Ca(2+), intracellular pH (pH(i)), ERK1/2, and Akt/protein kinase B (PKB) phosphorylation. In this study, we looked at the efficacy of several putative SOCE inhibitors and whether SOCE mediates intracellular alkalinization, ERK1/2, and Akt/PKB phosphorylation in bovine neutrophils. We demonstrated that the absence of external Ca(2+) and the presence of EGTA reduced the intracellular alkalinization and ERK1/2 phosphorylation induced by PAF, apparently via SOCE influx inhibition. Next, we tested the efficacy of several putative SOCE inhibitors such as 2-aminoethoxydiphenyl borate (2-APB), capsaicin, flufenamic acid, 1-{beta-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl}-1H-imidazole hydrochloride (SK&F 96365), and N-(4-[3,5-bis(trifluoromethyl)-1H-pyrazol-1-yl]phenyl)-4-methyl-1,2,3-thiadiazole-5-carboxamide (BTP2) on Ca(2+) entry induced by PAF or thapsigargin. 2-APB was the most potent SOCE inhibitor, followed by capsaicin and flufenamic acid. Conversely, SK&F 96365 reduced an intracellular calcium ([Ca(2+)](i)) peak but SOCE partially. BTP2 did not show an inhibitory effect on [Ca(2+)](i) following PAF stimuli. 2-APB strongly reduced the pH(i) recovery, whereas the effect of flufenamic acid and SK&F 96365 was partial. Capsaicin and BTP2 did not affect the pH(i) changes induced by PAF. Finally, we observed that 2-APB reduced the ERK1/2 and Akt phosphorylation completely, whereas the inhibition with flufenamic acid was partial. The results suggest that 2-APB is the most potent SOCE inhibitor and support a key role of SOCE in pH alkalinization and PI-3K-ERK1/2 pathway control. Finally, 2-APB could be an important tool to characterize Ca(2+) signaling in neutrophils.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.