We attached paraformaldehyde-fixed human erythrocyte ghosts to coated coverslips and sheared them to expose the cytoskeleton. Quick-freeze, deep-etch, rotary-replication, or tannic acid/osmium fixation and plastic embedding revealed the cytoskeleton as a dense network of intersecting straight filaments. Previous negative stain studies on spread skeletons found 5-6 spectrin tetramers intersecting at each actin oligomer, with an estimated 250 such intersections/microns 2 of membrane. In contrast, we found 3-4 filaments at each intersection and approximately 400 intersections/microns 2 of membrane. Immunogold labeling verified that the filaments were spectrin, but their lengths (29-37 nm) were approximately one-third that of extended spectrin dimers. The length and diameter of the filaments were sufficient to accommodate spectrin dimers, but not spectrin tetramers. Our results suggest that, in situ, spectrin dimers may associate as hexamers and octamers, rather than tetramers. We present several explanations that can reconcile our observations on intact cytoskeletons with previous reports on spread material. Extracting sheared ghosts with solutions of low ionic strength removed the cytoskeleton to reveal projections from the cytoplasmic surface of the membrane. These projections contained band 3, as shown by immunogold labeling, and they aggregated to a similar extent as intramembrane particles (IMP) when the cytoskeleton was removed, suggesting a direct relationship between these structures. Quantification indicated a stoichiometry of 2 IMP for each cytoplasmic projection. Cytoplasmic projections presumably contain other proteins besides band 3 since further treatment with high ionic strength solutions extracts peripheral proteins and reduces the diameter of projections by approximately 3 nm.
Intermediate filaments, composed of desmin and of keratins, play important roles in linking contractile elements to each other and to the sarcolemma in striated muscle. We examined the contractile properties and morphology of fast-twitch skeletal muscle from mice lacking keratin 19. Tibialis anterior muscles of keratin-19-null mice showed a small but significant decrease in mean fiber diameter and in the specific force of tetanic contraction, as well as increased plasma creatine kinase levels. Costameres at the sarcolemma of keratin-19-null muscle, visualized with antibodies against spectrin or dystrophin, were disrupted and the sarcolemma was separated from adjacent myofibrils by a large gap in which mitochondria accumulated. The costameric dystrophin-dystroglycan complex, which co-purified with γ-actin, keratin 8 and keratin 19 from striated muscles of wild-type mice, co-purified with γ-actin but not keratin 8 in the mutant. Our results suggest that keratin 19 in fast-twitch skeletal muscle helps organize costameres and links them to the contractile apparatus, and that the absence of keratin 19 disrupts these structures, resulting in loss of contractile force, altered distribution of mitochondria and mild myopathy. This is the first demonstration of a mammalian phenotype associated with a genetic perturbation of keratin 19.
The small G protein Ras-mediated signaling pathway has been implicated in the development of hypertrophy and diastolic dysfunction in the heart. Earlier cellular studies have suggested that the Ras pathway is responsible for reduced L-type calcium channel current and sarcoplasmic reticulum (SR) calcium uptake associated with sarcomere disorganization in neonatal cardiomyocytes. In the present study, we investigated the in vivo effects of Ras activation on cellular calcium handling and sarcomere organization in adult ventricular myocytes using a newly established transgenic mouse model with targeted expression of the H-Ras-v12 mutant. The transgenic hearts expressing activated Ras developed significant hypertrophy and postnatal lethal heart failure. In adult ventricular myocytes isolated from the transgenic hearts, the calcium transient was significantly depressed but membrane L-type calcium current was unchanged compared with control littermates. The expressions of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a and phospholamban (PLB) were significantly reduced at mRNA levels. The amount of SERCA2a protein was also modestly reduced. However, the expression of PLB protein and gross sarcomere organization remained unchanged in the hypertrophic Ras hearts, whereas Ser(16) phosphorylation of PLB was dramatically inhibited in the Ras transgenic hearts compared with controls. Hypophosphorylation of PLB was also associated with a significant induction of protein phosphatase 1 expression. Therefore, our results from this in vivo model system suggest that Ras-induced contractile defects do not involve decreased L-type calcium channel activities or disruption of sarcomere structure. Rather, suppressed SR calcium uptake due to reduced SERCA2a expression and hypophosphorylation of PLB due to changes in protein phosphatase expression may play important roles in the diastolic dysfunction of Ras-mediated hypertrophic cardiomyopathy.
Human erythroid spectrin dimer assembly is initiated by the association of a specific region near the N-terminal of -spectrin with a complementary region near the C-terminal of ␣-spectrin (Speicher, D. W., Weglarz, L., and DeSilva, T. M. (1992) J. Biol. Chem. 267, 14775-14782). Both spectrin subunits consist primarily of tandem, 106-residue long, homologous, triple-helical motifs. In this study, the minimal region of -spectrin required for association with ␣-spectrin was determined using recombinant peptides. The start site (phasing) for construction of dimerization competent -spectrin peptides was particularly critical. The beginning of the first homologous motif for both -spectrin and the related dimerization site of ␣-actinin is approximately 8 residues earlier than most spectrin motifs. A four-motif -spectrin peptide (1-4 ؉ ) with this earlier starting point bound to full-length ␣-spectrin with a K d of about 10 nM, while deletion of these first 8 residues reduced binding nearly 10-fold. N-and C-terminal truncations of one or more motifs from 1-4 ؉ showed that the first motif was essential for dimerization since its deletion abolished binding, but 1؉ alone could not associate with ␣-monomers. The first two motifs (1-2 ؉ ) represented the minimum lateral dimer assembly site with a K d of about 230 nM for interaction with full-length ␣-spectrin or an ␣-spectrin nucleation site recombinant peptide, ␣18 -21. Each additional motif increased the dimerization affinity by approximately 5-fold. In addition to this strong inter-subunit dimer association, interactions between the helices of a single triple-helical motif are frequently strong enough to maintain a noncovalent complex after internal protease cleavage similar to the interactions thought to be involved in tetramer formation. Analysis of hydrodynamic radii of recombinant peptides containing differing numbers of motifs showed that a single motif had a Stokes radius of 2.35 nm, while each additional motif added only 0.85 nm to the Stokes radius. This is the first direct demonstration that spectrin's flexibility arises from regions between each triple helical motif rather than from within the segment itself and suggests that current models of inter-motif connections may need to be revised.The membrane skeleton of the human erythrocyte consists of a network of proteins that associates with the inner surface of the cell membrane and imparts remarkable structural integrity and flexibility to circulating erythrocytes. Spectrin is the major structural component of this specialized submembranous protein network. The basic functional unit of spectrin is a heterodimer formed by side-to-side, antiparallel association of a 280-kDa ␣ subunit with a 246-kDa  subunit. Spectrin dimers associate head-to-head to form tetramers, the predominant form of spectrin in the membrane skeleton. These tetramers cross-link short actin oligomers, an association modulated by band 4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.