A high-molecular-weight c-type cytochrome, Cyc2, and a putative 22-kDa c-type cytochrome were detected in the membrane fraction released during spheroplast formation from Acidithiobacillus ferrooxidans. This fraction was enriched in outer membrane components and devoid of cytoplasmic membrane markers. The genetics, as well as the subcellular localization of Cyc2 at the outer membrane level, therefore make it a prime candidate for the initial electron acceptor in the respiratory pathway between ferrous iron and oxygen.
An autotrophic bacterium able to gain energy from the oxidation of arsenite was isolated from arsenite-containing acid mine drainage waters. It belongs to the genus Thiomonas as shown by DNA-DNA hybridization experiments, 16S rRNA gene sequence, quinone and fatty acid content analyses. Carboxysomes were observed and the cbbSL genes encoding the ribulose 1,5-bisphosphate carboxylase/oxygenase were detected, confirming that this bacterium is able to fix CO(2). Arsenite oxidation was catalysed by a membrane-bound enzyme, and this activity was detected essentially in cells grown in the presence of arsenite. The genes encoding the two subunits of the arsenite oxidase of the Thiomonas isolate have been sequenced. The small subunit has a characteristic Tat signal sequence and contains the residues binding the [2Fe-2S] Rieske-type cluster. The large subunit has the [3Fe-4S] cluster-binding motif as well as the residues proposed to bind arsenite. In addition, most of the residues interacting with the molybdenum cofactor are conserved. The genes encoding both subunits belong to an operon, likely with a gene encoding a cytochrome c. The expression of this operon is greater in cells grown in the presence than in the absence of arsenite, in agreement with a transcriptional regulation in the presence of this metalloid.
The regulation of the expression of the rus operon, proposed to encode an electron transfer chain from the outer to the inner membrane in the obligate acidophilic chemolithoautroph Acidithiobacillus ferrooxidans, has been studied at the RNA and protein levels. As observed by Northern hybridization, real-time PCR and reverse transcription analyses, this operon was more highly expressed in ferrous iron- than in sulfur-grown cells. Furthermore, it was shown by immunodetection that components of this respiratory chain are synthesized in ferrous iron- rather than in sulfur-growth conditions. Nonetheless, weak transcription and translation products of the rus operon were detected in sulfur-grown cells at the early exponential phase. The results strongly support the notion that rus-operon expression is induced by ferrous iron, in agreement with the involvement of the rus-operon-encoded products in the oxidation of ferrous iron, and that ferrous iron is used in preference to sulfur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.