Until recently, the Vitamin D External Quality Assessment Scheme (DEQAS) assessed the performance of various assays for the determination of serum total 25-hydroxyvitamin D [25(OH)D] by using a consensus mean based on the all-laboratory trimmed mean (ALTM) of the approximately 1000 participants' results. Since October 2012, the National Institute of Standards and Technology (NIST), as part of the Vitamin D Standardization Program, has participated in DEQAS by analyzing the quarterly serum sample sets using an isotope dilution LC-tandem MS (ID LC-MS/MS) reference measurement procedure to assign an accuracy-based target value for serum total 25(OH)D. NIST has analyzed 90 DEQAS samples (18 exercises × 5 samples/exercise) to assign target values. The NIST-assigned values are compared with the ALTM and the biases assessed for various assays used by the participants, e.g., LC-MS/MS, HPLC, and several ligand-binding assays. The NIST-value assignment process and the results of the analyses of the 90 DEQAS samples are summarized. The absolute mean bias between the NIST-assigned values and the ALTM was 5.6%, with 10% of the samples having biases >10%. Benefits of the accuracy-based target values are presented, including for sample sets with high concentrations of 25(OH)D2 and 3-epi-25(OH)D3.
The determination of the presence of nitric oxide (NO) metabolites in the rat vitreous cavity in a regioselective manner is complicated by the size and shape of the eye as well as the diffusivity of the molecule and its metabolites. In this work, in vivo low-flow push-pull perfusion sampling was utilized with a rapid capillary electrophoretic assay to monitor levels of the major NO metabolite, nitrate, at the vitreoretinal interface (VRI) of normal and aged rat models. The sampling probe tips were placed in three different positions in the posterior chamber through a 29-gauge guide needle. Sampling was performed along the VRI over the optic nerve head and regions peripheral to the optic nerve head. Additionally, samples were collected from the middle vitreous region to compare to VRI sampling. A significant (P<0.05) difference in the perfusate nitrate concentration was observed in each location, which may be due to the source of NO production or the clearance mechanism of the molecule from vitreous cavity. Infusion of L-NAME with physiological saline led to a significant decrease (35%) in the observed nitrate level. LFPPP was then utilized to observe nitrate levels after an average of 4.5 months of aging. A 3-fold increase in the mean level of nitrate over the optic nerve head was observed in mature animals compared to younger control animals. Precise measurement of NO metabolites along the VRI may provide insights into the function of NO in maintaining homeostatic conditions and the molecular changes at the diseased retina.
A system is presented demonstrating the high-temporal resolution coupling of low-flow push-pull perfusion sampling (LFPS) to capillary electrophoresis for the absorbance measurement of ascorbate at the rat vitreoretinal interface. This system holds all separation components at a low pressure as the means for withdrawing sample during LFPS. The system uses a flow-gated interface to directly couple the withdrawal capillary from the LFPS probe to a separation capillary and eliminates the need for any offline sample handling. The temporal resolution of the system was limited by injection time and is less than 16 s. This high temporal resolution was applied to the monitoring of in vivo ascorbate levels at the rat vitreoretinal interface. Baseline concentrations of ascorbate were found to be 86 microM +/- 18 microM at the vitreoretinal interface. Baseline concentrations matched well with those obtained for the postmortem bulk vitreous analysis. Upon stimulation with 145 mM K(+), a maximum increase in baseline values between 32-107% for n = 3 was observed. This system demonstrates the first in vivo temporal study of ascorbate at the rat vitreoretinal interface.
Biomarkers of tobacco exposure have a central role in studies of tobacco use and nicotine intake. The most significant exposure markers are nicotine itself and its metabolites in urine. Therefore, it is important to evaluate the performance of laboratories conducting these biomarker measurements. This report presents the results from a method performance study involving 11 laboratories from 6 countries that are currently active in this area. Each laboratory assayed blind replicates of seven human urine pools at various concentrations on three separate days. The samples included five pools blended from smoker and nonsmoker urine sources, and two additional blank urine samples fortified with pure nicotine, cotinine, and hydroxycotinine standards. All laboratories used their own methods, and all were based on some form of liquid chromatography/tandem mass spectrometry. Overall, good agreement was found among the laboratories in this study. Intralaboratory precision was good, and in the fortified pools, the mean bias observed was < + 3.5% for nicotine, approximately 1.2% for hydroxycotinine, and less than 1% for cotinine (1 outlier excluded in each case). Both indirect and direct methods for analyzing the glucuronides gave comparable results. This evaluation indicates that the experienced laboratories participating in this study can produce reliable and comparable human urinary nicotine metabolic profiles in samples from people with significant recent exposure to nicotine. This work supports the reliability and agreement of an international group of established laboratories measuring nicotine and its metabolites in urine in support of nicotine exposure studies. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.