SUMMARYConifers are extremely long-lived plants that have evolved complex chemical defenses in the form of oleoresin terpenoids to resist attack from pathogens and herbivores. In these species, terpenoid diversity is determined by the size and composition of the terpene synthase (TPS) gene family and the single-and multi-product profiles of these enzymes. The monoterpene (+)-3-carene is associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil (Pissodes strobi). We used a combined genomic, proteomic and biochemical approach to analyze the (+)-3-carene phenotype in two contrasting Sitka spruce genotypes. Resistant trees produced significantly higher levels of (+)-3-carene than susceptible trees, in which only trace amounts were detected. Biosynthesis of (+)-3-carene is controlled, at the genome level, by a small family of closely related (+)-3-carene synthase (PsTPS-3car) genes (82-95% amino acid sequence identity). Transcript profiling identified one PsTPS-3car gene (PsTPS-3car1) that is expressed in both genotypes, one gene (PsTPS-3car2) that is expressed only in resistant trees, and one gene (PsTPS-3car3) that is expressed only in susceptible trees. The PsTPS-3car2 gene was not detected in genomic DNA of susceptible trees. Target-specific selected reaction monitoring confirmed this pattern of differential expression of members of the PsTPS-3car family at the proteome level. Kinetic characterization of the recombinant PsTPS-3car enzymes identified differences in the activities of PsTPS-3car2 and PsTPS-3car3 as a factor contributing to the different (+)-3-carene profiles of resistant and susceptible trees. In conclusion, variation of the (+)-3-carene phenotype is controlled by copy number variation of PsTPS-3car genes, variation of gene and protein expression, and variation in catalytic efficiencies.
The white pine weevil ( Pissodes strobi Peck) is an important insect pest in the Pacific Northwest that attacks the apical stem leaders of spruce ( Picea spp.) causing damage to tree form, growth, and stand development. Because of attacks by weevils, Sitka spruce ( P. sitchensis Bong.) is not commonly replanted as a commercial species in coastal British Columbia, despite its economic and ecological importance. In the last decade, the focus of research on Sitka spruce resistance against weevils has moved from silvicultural approaches to breeding for resistance. The British Columbia Ministry of Forests and Range, in collaboration with the Canadian Forest Service, has developed a successful program to screen populations and select tree genotypes for resistance to weevil attack. Part of this effort has been the establishment of clonebanks that contain genotypes from throughout the range of Sitka spruce. For metabolite profiling, using gas chromatography coupled with flame ionization detection or mass spectrometry, we analysed 111 different genotypes to determine the relationship of mono- and di-terpenoid oleoresin compounds with the resistance rating. Dehydroabietic acid, a diterpene, was identified as a strong indicator of resistance. Two monoterpenes, (+)-3-carene and terpinolene, were also associated with resistance in genotypes originating from one of the areas (Haney) in which resistance has been noted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.