Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be selfarchived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.
South Africa's Cape Fold Ecoregion supports a unique freshwater fish assemblage with many endemics. To mitigate impacts of alien invasive fishes on this unique assemblage, nature conservation authority CapeNature used rotenone to remove smallmouth bass (Micropterus dolomieu) from the Rondegat River. We investigated whether the rotenone treatments had an adverse impact on the aquatic macroinvertebrate community over the long-term, the first study of its kind in Africa. We monitored macroinvertebrates within treated and untreated (control) sites on multiple sampling events for 2 years before and 2 years after two rotenone treatments. We analysed the difference in invertebrate abundance between treatment and control sites before and after treatment, using generalised linear mixed models with sampling event as a random factor to partition out natural fluctuations in abundances over time. Populations fluctuated widely in control and treatment sites over the study period, and we found no effect that could be clearly attributed to rotenone. We conclude that macroinvertebrates recovered rapidly after treatment, probably through drift from untreated areas upstream, with no long-term adverse effects. We recommend that the presence of uninvaded upstream refuges that may provide demographic rescue be used Handling editor: Verónica Ferreira
The control of invasive alien fish populations using piscicides to alleviate impacts on native biota is a controversial conservation strategy because the collateral impacts on non‐target taxa are not well documented. This article documents the responses of water quality, plankton and macroinvertebrate communities to an eradication of the globally invasive common carp Cyprinus carpio Linnaeus 1758, using the piscicide rotenone in a small South African reservoir. Treated and untreated reservoirs were sampled before and at intervals following rotenone treatment. Sampling endpoints included water quality parameters, plankton, macroinvertebrates and fish. These endpoints were selected to gain an understanding of the ecological impacts of the treatment at various biological levels and to document possible recovery following treatment. The study showed that: (i) the common carp were successfully removed; (ii) water clarity improved following the removal of fish; (iii) invertebrate communities, including macroinvertebrates and large zooplankton, recovered within 6 months of treatment; and (iv) that small zooplankton (i.e. Rotifera) dynamics were complex but rotifer abundances had returned to pre‐treatment levels within 6 months of treatment. There was a 56% similarity between the macroinvertebrate assemblages before and 6 months after treatment, showing a substantial turnover in taxa following treatment. The phytoplankton community of the treated reservoir was dominated by blue‐green and green algae prior to the treatment. The blue‐green algal communities were not present 6 months after the treatment, possibly indicating a change in the nutrient status of the reservoir resulting from lower nutrient concentrations in the water column. The phytoplankton community of the reservoir changed from a community typical of eutrophic waters to a community typical of a lower nutrient state. Within each group, there were species changes, but we suggest these are likely to be part of the altered biological interaction dynamics resulting from fish removals, rather than a direct effect of rotenone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.