Nucleic acid material of adequate quality is crucial for successful high-throughput sequencing (HTS) analysis. DNA and RNA isolated from archival FFPE material are frequently degraded and not readily amplifiable due to chemical damage introduced during fixation. To identify optimal nucleic acid extraction kits, DNA and RNA quantity, quality and performance in HTS applications were evaluated. DNA and RNA were isolated from five sarcoma archival FFPE blocks, using eight extraction protocols from seven kits from three different commercial vendors. For DNA extraction, the truXTRAC FFPE DNA kit from Covaris gave higher yields and better amplifiable DNA, but all protocols gave comparable HTS library yields using Agilent SureSelect XT and performed well in downstream variant calling. For RNA extraction, all protocols gave comparable yields and amplifiable RNA. However, for fusion gene detection using the Archer FusionPlex Sarcoma Assay, the truXTRAC FFPE RNA kit from Covaris and Agencourt FormaPure kit from Beckman Coulter showed the highest percentage of unique read-pairs, providing higher complexity of HTS data and more frequent detection of recurrent fusion genes. truXTRAC simultaneous DNA and RNA extraction gave similar outputs as individual protocols. These findings show that although successful HTS libraries could be generated in most cases, the different protocols gave variable quantity and quality for FFPE nucleic acid extraction. Selecting the optimal procedure is highly valuable and may generate results in borderline quality specimens.
The expression of fibroblast growth factors (FGF1 and FGF2) and their receptors has been reported in a variety of human neoplasms, including haematological neoplasia. Fibroblast growth factors can promote tumour growth directly, or indirectly through promoting the growth of vessels. In the present study, we evaluated the expression of FGF1 and FGF2 as well as FGF receptors 1-4 (FGFR1-FGFR4) in 39 cases of Hodgkin's lymphoma, including all subtypes, as well as Hodgkin's lymphoma cell lines. FGF1 and FGF2 and their receptors FGFR2-FGFR4, but not FGFR1, were found to be expressed by the malignant cells in the majority of cases. Interestingly, only FGFR3, but none of the FGFs or the other FGFRs, was expressed by the Hodgkin's lymphoma cell lines. This indicates that only FGFR3 is constitutively expressed by Hodgkin's lymphoma cells, whereas FGFs and the other FGFRs are induced in vivo. Culture of the Hodgkin's cell lines under conditions of hypoxic stress could induce vascular endothelial growth factor (VEGF) but not FGF expression. FGFs, in contrast to VEGF, might be expressed in response to paracrine stimuli. In situ hybridization did not reveal FGFR3 gene amplification or translocation as the cause of constitutive FGFR3 expression, as has been shown in a subset of multiple myeloma. FGFR3 might be expressed as part of the Hodgkin's cell phenotype. The demonstration of widespread expression of FGFs and some of their receptors in Hodgkin's lymphoma suggests that FGFs are important for sustaining growth of the lymphoma and suggests that anti-FGF antibodies could be used as an adjuvant treatment.
Background: Tumour rupture is a strong predictor of poor outcome in gastrointestinal stromal tumours (GISTs) of the stomach and small intestine. The objective was to determine whether tumour genotype was associated with risk of rupture. Conclusion: Gastric GISTs with KIT exon 11 deletions involving codons 557 and 558 are at increased risk of tumour rupture. This high-risk feature can be identified in the diagnostic evaluation and should be included in the assessment when neoadjuvant imatinib treatment is considered.
Background Adjuvant imatinib for 3 years is recommended to patients with high-risk gastrointestinal stromal tumor (GIST). Risk stratification is inaccurate, and risk assessments are further complicated by the increased use of neoadjuvant treatment. Anatomical criteria for prognostication have not been investigated. Methods Clinical, molecular, and anatomical variables were retrospectively studied in a population-based cohort of 295 patients with gastric GIST resected between 2000 and 2018. Gastric subsite was divided into the upper, middle, and lower thirds. Growth pattern was classified as luminal, exophytic, or transmural based on imaging and surgical reports. Results Of 113 tumors in the upper third of the stomach, 103 (91.2%) were KIT mutated, 7 (6.2%) were PDGFRA mutated, and 104 (92.0%) harbored genotypes sensitive to imatinib. Transmural tumors were strongly associated with a high mitotic index. Five-year recurrence-free survival (RFS) was 71% for patients with transmural tumors versus 96% with luminal or exophytic tumors (hazard ratio [HR] 8.45, 95% confidence interval [CI] 3.69–19.36; p < 0.001), and, in high-risk patients, 5-year RFS was 46% for patients with transmural tumors versus 83% with luminal or exophytic tumors (HR 4.47, 95% CI 1.71–11.66; p = 0.001). Among 134 patients with tumors > 5 cm, there were 29 recurrences. Only five patients with exophytic or luminal tumors had recurrent disease, of whom four had tumor rupture. Five-year RFS for patients with exophytic/luminal tumors >5 cm without rupture was 98%. Conclusions In the upper third, over 90% of tumors were sensitive to imatinib. Patients with exophytic or luminal tumors without rupture, irrespective of size, had an excellent prognosis and may not benefit from adjuvant therapy.
Spindle cell tumors are clinically heterogeneous but morphologically similar neoplasms that can occur anywhere, mostly in adult patients. They are treated primarily with surgery to which is often added adjuvant or neoadjuvant radiation. Sub-classification of spindle cell sarcomas requires integration of histology, clinicopathological parameters, immunohistochemistry, cytogenetics (including fluorescence in situ hybridization) and/or molecular genetics. Some of the tumor subtypes are characterized by the presence of distinct chromosomal translocations and fusion genes. When no signs of differentiation are seen, the diagnosis by exclusion becomes undifferentiated spindle cell sarcoma. Cytogenetic, RNA sequencing and RT-PCR analyses were performed on a case of spindle cell sarcoma. The karyotype of the primary tumor was 46,X,del(X)(p?11p?22), der(12)(12pter→12q?22::12q?15→ q?22::16p11→16pter),-16,+r(12). MDM2 was found amplified in both the primary tumor and a metastasis. RNA-Seq of the primary tumor identified four fusion genes, PTGES3-PTPRB, HMGA2-DYRK2, TMBIM4-MSRB3 and USP15-CNTN1, in which all the partner genes map to the q arm of chromosome 12. In material from the metastasis, RT-PCR detected the PTGES3-PTPRB, HMGA2-DYRK2 and TMBIM4-MSRB3 whereas no USP15-CNTN1 fusion transcript was found. Because MDM2 amplification and the fusion transcripts PTGES3-PTPRB, HMGA2-DYRK2 and TMBIM4-MSRB3 were found both in the primary tumor and in the metastasis, they are components of the same clone and may be involved both in initiation and progression of the tumor. Which of them is pathogenetically primary remains unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.