The population in the city of São Paulo suffering from tinnitus was more prevalent than previously estimated. Generally, it affects more women and those without occupation, and increases significantly with age. Most respondents described the tinnitus as annoying, and this was more prevalent in females. The degree of discomfort measured by a Visual Analogue Scale showed moderate tinnitus, with responses averaging 6.3.
The prevalence of dizziness in São Paulo was found to be 42%. It affects daily activities in 67% of symptomatic patients, but only 46% of them seek medical help.
Since somatic or somatosensory tinnitus (ST) was first described as a subtype of subjective tinnitus, where altered somatosensory afference from the cervical spine or temporomandibular area causes or changes a patient’s tinnitus perception, several studies in humans and animals have provided a neurophysiological explanation for this type of tinnitus. Due to a lack of unambiguous clinical tests, many authors and clinicians use their own criteria for diagnosing ST. This resulted in large differences in prevalence figures in different studies and limits the comparison of clinical trials on ST treatment. This study aimed to reach an international consensus on diagnostic criteria for ST among experts, scientists and clinicians using a Delphi survey and face-to-face consensus meeting strategy. Following recommended procedures to gain expert consensus, a two-round Delphi survey was delivered online, followed by an in-person consensus meeting. Experts agreed upon a set of criteria that strongly suggest ST. These criteria comprise items on somatosensory modulation, specific tinnitus characteristics, and symptoms that can accompany the tinnitus. None of these criteria have to be present in every single patient with ST, but in case they are present, they strongly suggest the presence of ST. Because of the international nature of the survey, we expect these criteria to gain wide acceptance in the research field and to serve as a guideline for clinicians across all disciplines. Criteria developed in this consensus paper should now allow further investigation of the extent of somatosensory influence in individual tinnitus patients and tinnitus populations.
Here we define a ~200 Kb genomic duplication in 2p14 as the genetic signature that segregates with postlingual progressive sensorineural autosomal dominant hearing loss (HL) in 20 affected individuals from the DFNA58 family, first reported in 2009. The duplication includes two entire genes, PLEK and CNRIP1, and the first exon of PPP3R1 (protein coding), in addition to four uncharacterized long non-coding (lnc) RNA genes and part of a novel protein-coding gene. Quantitative analysis of mRNA expression in blood samples revealed selective overexpression of CNRIP1 and of two lncRNA genes (LOC107985892 and LOC102724389) in all affected members tested, but not in unaffected ones. Qualitative analysis of mRNA expression identified also fusion transcripts involving parts of PPP3R1, CNRIP1 and an intergenic region between PLEK and CNRIP1, in the blood of all carriers of the duplication, but were heterogeneous in nature. By in situ hybridization and immunofluorescence, we showed that Cnrip1, Plek and Ppp3r1 genes are all expressed in the adult mouse cochlea including the spiral ganglion neurons, suggesting changes in expression levels of these genes in the hearing organ could underlie the DFNA58 form of deafness. Our study highlights the value of studying rare genomic events leading to HL, such as copy number variations. Further studies will be required to determine which of these genes, either coding proteins or non-coding RNAs, is or are responsible for DFNA58 HL.
BackgroundCulturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy.MethodsOrgans of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGFα). Immunofluorescence assays were conducted for phenotype characterization.ResultsThe TGFα group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells.ConclusionsDissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.