Despite remarkable economic growth and development in recent decades, Rwanda has been still facing energy crises and challenges. Although the country has considerable energy assets, less than 10% is utilized for its local electricity needs. Currently, national installed generation capacity is estimated at 221 MW, for a population around 12 million, and electricity access is estimated at 51% (37% grid and 14% off-grid networks). About half the population is without electricity access while the grid-connected users face high electricity tariffs and frequent power outages (blackouts). The national grid itself is also experiencing high losses. This paper used the HOMER software for modeling the optimal, sustainable, reliable, and affordable photovoltaic solar technologies as energy solutions for all (off-grid and on-grid users) in Rwanda. The selection and recommendation of a suitable photovoltaic (PV) solar technology depend on its annual electricity production capacity, electrical load, renewable energy penetration percentage, economic viability, feasibility, affordability, carbon footprint, and greenhouse gas emission level for climate change considerations towards a clean and greener future. The results show that the least cost of energy (LCOE) for electricity production by each of the solar PV systems with storage, PV-grid-connected household, and PV-grid connection with storage was 67.5%, 56.8%, and 33.9%, respectively, lower than the normal electricity tariff in Rwanda. The PV systems with storage proposed in this paper could be effective in increasing national energy resource exploitation, providing affordable and reliable energy access to all citizens.
Solar PV research in East Africa has concentrated on solar home systems (SHS) in each country. However, several other fundamental advances in the solar photovoltaic (PV) industry have emerged, and the developments have seen the sector experienced significant growth and diversification of models, regulation, and financing. This paper begins with an extensive narrative on the solar PV outlook of each of the six countries studied. A solar PV minigrid was also simulated using HOMER software with a critical load of 2800.0 kWh/day in order to analyze the peak shaving capability and assess the affordability of the solar PV microgrid having commercial and industrial loads. The regional overview of the efforts was identified, followed by a description of the models, payment methods, and barriers encountered collectively. The lessons from this research suggest that there is a vast potential for solar PV micro and minigrid deployment in the region with a population of over 100 million people lacking access to electricity by the end of 2019. It shows that solar PV minigrid deployment in East Africa is still at a nascent phase. Also, minigrid developers face several challenges operating in rural areas. While solar PV minigrids remain fairly nascent in the East Africa region, the technology is gaining traction, a development that indicates budding confidence in the solar PV minigrid technology. This study identifies that (1) with large critical loads (industrial and commercial), solar PV minigrid can still contribute to affordable electricity through peak shaving, except Tanzania; (2) solar PV minigrid projects are largely dependent on donor financing, require vast financial diversity to get off the ground, and offer consistent service; (3) Governments support in the form of National electrification strategies, policies, and regulation are key ingredients for realizing the electrification of rural populations through minigrids; (4) hybrid minigrids and power demand creation have emerged as an approach that ensures sustainability or profitability for the operating solar minigrid firms. Overall, government policy and regulation, funding, and financial sustainability remain the major hurdles to minigrid uptake in the region.
Renewable energy exploitation is among the development strategies set by the government of Rwanda on the roadmap to 2023/2024 universal electricity access and the United Nations plans by 2030. Numerous previous studies on clean energy technologies in Rwanda have mostly focused on households' usage but there are currently no studies describing the feasibility of clean energy technologies for financial institutions. The skepticism on renewable energy in Africa was previously reported by some personnel. Having realized that most SACCOs (Savings and Credit Co-Operatives) in Rwanda use diesel technology for backup/emergency electricity supply, taking consideration of abundant solar resources in Rwanda, having seen the viability and feasibility studies from other countries of renewable energy for different institutions (financial included); this work uses the HOMER Energy Software and the electricity load profile of a typical SACCO in Rwanda to analyse the affordability and viability of on-site renewable energy generation for SACCO in Rwanda. The results reveal that a solar PV system with storage can be the optimal solution (with levelized cost of electricity (LCOE) of 0.713 $/kWh which is cheaper than 0.73 $/kWh for diesel technology) for SACCOs located in both off-grid areas and grid-connected areas (with 0.041 $/kWh LCOE which is lower than the current electricity tariff in Rwanda). The findings in this work can serve as basic tools/materials for policy drafters in Rwanda on how financial institutions can contribute to climate change mitigation through self-renewable energy exploitation.
This article empirically examined the influence of available electricity on information and communication technology (ICT) usage in East African Community (EAC) countries deploying regression analysis. It operationalized ICT usage in terms of the composite index comprising mobile phone, Internet, and electricity access by the percentage of the population who has an electricity connection. The results indicate that (1) a strong beneficial link exists between power access and ICT usage in three EAC countries (Burundi, Kenya, and Rwanda). (2) Employing data flow assumptions for the linear regression analysis in Burundi, Kenya, and Rwanda means that ICT usage can be determined based on electricity access in each of these countries. (3) There is no direct link between electricity access and ICT usage in South Sudan, Tanzania, and Uganda.
Access to energy is among the key pillars to socioeconomic and improved life style. The East African Community (EAC) countries, also members of sub-Saharan Africa, are among countries with enough energy resources but still struggling with low electricity access, and the lower proportion of citizens with electricity access challenges such as expensive tariff, frequent blackouts, and unreliable service still persists. Diesel technology is among the easy and fast installation technologies for a location with an urgent need of electricity while solar is a clean technology with free fuel. Considering the diversity of electricity tariffs, cost of diesel fuel, and suitability to solar energy exploitation in EAC, this paper intends to provide a technoeconomic analysis for reliable, affordable, and sustainable energy system in the region. A daily load of 94.44 kWh recorded from averaging electricity bills of a luxury house in Kigali, Rwanda, is used as research object, and HOMER simulations are carried on considering the level of such daily load being supplied by either (a) diesel generator, (b) solar + diesel technology, (c) PV + battery storage, or (d) PV + battery storage + grid system in each member country of the EAC. The results show that (a) solar energy is a feasible and applicable technology for energy generation for the whole six EAC countries; (b) for South Sudan, if it is a standalone system, the diesel technology is less costly than solar technology; however, solar energy can still be recommended to be adopted as it has no gas emissions; (c) except South Sudan, PV + battery storage technology is found to be more affordable and cleaner than any technology including diesel; and (d) the option of connecting PV + battery storage to the grid is found more economical for locations where grid interaction is possible because their levelized electricity costs (LCOE) are lower than the real electricity tariffs currently in use within each of the six EAC countries. The solar energy system with battery storage (both off-grid and grid connected) proposed in this research can lead to an efficient increase of national energy resource exploitation in the EAC countries, resulting in reliable, affordable, and sustainable energy access to all the citizenry of the EAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.