The lack of standardized methods to study soil organisms prevents comparisons across data sets and the development of new global and regional experiments and assessments. Moreover, standardized methods are needed to evaluate the impact of anthropogenic stressors, such as chemicals, on soil organism communities in the regulatory context. The goal of this contribution is to summarize current methodological approaches to measure structural and functional diversity of soil organisms, and to identify gaps and methodological improvements so as to cross data sets generated worldwide. This is urgently needed because several currently ongoing regional and global soil biodiversity studies are not coordinated with one another in terms of methodology, including database development. Therefore, we evaluated the standard methods to sample, identify, determine, and assess soil organisms currently applied or proposed, using well-accepted criteria such as ecological relevance; practicability of usage in terms of resources, time, and costs; and the level of standardization. Methods addressing both the structure and the functions of soil organisms (populations or communities) are included, with a special focus on new molecular methods based on nucleic acid extraction and further analyses by polymerase chain reaction (PCR)-based approaches for microorganisms and invertebrates. We particularly highlight the activities of the Technical Committee (TC) 190 of the International Organization for Standardization (ISO) because ISO guidelines are legally accredited by many national or international authorities when they put conservation laws and regulations into practice. Finally, we propose detailed recommendations regarding gaps in the available set of standards, in order to identify a list of new methods to be standardized. We propose to organize this whole process under the Global Soil Biodiversity Initiative (GSBI) in order to ensure a truly global approach for the assessment of soil biodiversity. Integr Environ Assess Manag 2018;14:463-479. © 2018 SETAC.
A peer-reviewed open-access journalFrieder Graef et al. / BioRisk 7: 73-97 (2012) AbstractThe assessment of the impacts of growing genetically modified (GM) crops remains a major political and scientific challenge in Europe. Concerns have been raised by the evidence of adverse and unexpected environmental effects and differing opinions on the outcomes of environmental risk assessments (ERA). The current regulatory system is hampered by insufficiently developed methods for GM crop safety testing and introduction studies. Improvement to the regulatory system needs to address the lack of well designed GM crop monitoring frameworks, professional and financial conflicts of interest within the ERA research and testing community, weaknesses in consideration of stakeholder interests and specific regional conditions, and the lack of comprehensive assessments that address the environmental and socio-economic risk assessment interface. To address these challenges, we propose a European Network for systematic GMO impact assessment (ENSyGMO) with the aim directly to enhance ERA and post-market environmental monitoring (PMEM) of GM crops, to harmonize and ultimately secure the long-term socio-political impact of the ERA process and the PMEM in the EU. These goals would be achieved with a multi-dimensional and multi-sector approach to GM crop impact assessment, targeting the variability and complexity of the EU agro-environment and the relationship with relevant socio-economic factors. Specifically, we propose to develop and apply methodologies for both indicator and field site selection for GM crop ERA and PMEM, embedded in an EU-wide typology of agro-environments. These methodologies should be applied in a pan-European field testing network using GM crops. The design of the field experiments and the sampling methodology at these field sites should follow specific hypotheses on GM crop effects and use state-of-the art sampling, statistics and modelling approaches. To address public concerns and create confidence in the ENSyGMO results, actors with relevant specialist knowledge from various sectors should be involved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.