We have synthesized gadolinium oxysulfide nanoparticles (NPs) doped with other lanthanides (Eu(3+), Er(3+), Yb(3+)) via a hydroxycarbonate precursor precipitation route followed by a sulfuration process under a H2S-Ar atmosphere at 750 °C in order to propose new multimodal nanoplatforms for Magnetic Resonance (MR), X-ray and photoluminescence imaging. Gd2O2S:Eu(3+) NPs strongly absorb near UV (≈ 300-400 nm) and re-emit strong red light (624 nm). They can be easily internalized by cancer cells, and imaged by epifluorescence microscopy under excitation in the NUV (365 nm). They are not cytotoxic for living cells up to 100 μg mL(-1). Consequently, they are well adapted for in vitro imaging on cell cultures. Gd2O2S:Eu(3+) NPs also show strong transverse relaxivity and strong X-ray absorption allowing their use as contrast agents for T2-weighted MRI and X-ray tomography. Our study shows that Gd2O2S:Eu(3+) NPs are considerably better than commercial Ferumoxtran-10 NPs as negative contrast agents for MRI. Upconversion emission of Gd2O2S:Er; Yb (1; 8%) NPs under infrared excitation (λ(ex) = 980 nm) shows mainly red emission (≈ 650-680 nm). Consequently, they are more specifically designed for in vivo deep fluorescence imaging, because both excitation and emission are located inside the "transparency window" of biological tissues (650-1200 nm). Magnetic relaxivity and X-ray absorption behaviors of Gd2O2S:Er; Yb NPs are almost similar to Gd2O2S:Eu(3+) NPs.
Luminescent colloidal nanosystems based on europium-doped biomimetic apatite were prepared and investigated. The colloids were synthesized by soft chemistry in the presence of a phospholipid moiety, 2-aminoethylphosphoric acid (AEP), with varying europium doping rates. Physicochemical features, including compositional, structural, morphological, and luminescence properties, were examined. Experimental evidence showed that suspensions prepared from an initial Eu/(Eu + Ca) molar ratio up to 2% consisted of singlephased biomimetic apatite nanocrystals covered with AEP molecules. The mean particle size was found to depend closely on the AEP content, enabling the production of apatite colloids with a controlled size down to ca. 30 nm. The colloids showed luminescence properties typical of europium-doped systems with narrow emission bands and long luminescence lifetimes of the order to the millisecond, and the data suggested the location of Eu 3+ ions in a common crystallographic environment for all the colloids. These systems, stable over time and capable of being excited in close-to-visible or visible light domains, may raise interest in the future in the field of medical imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.