Resistance towards the proteasome inhibitor bortezomib is poorly understood. We adapted the HL-60, ARH-77 and AMO-1 cell lines (myeloid leukemia, plasmocytoid lymphoma, myeloma) to bortezomib exceeding therapeutic plasma levels, and compared characteristics of the ubiquitin-proteasome system, alternative proteases and the unfolded protein response (UPR) between adapted cells and parental lines. Adapted cells showed increased transcription rates, activities and polypeptide levels of the bortezomib-sensitive b5, but also of the b2 proteasome subunit and consistently retained elevated levels of active b1/b5-type proteasome subunits in the presence of therapeutic levels of bortezomib. Bortezomib-adapted HL-60 cells showed increased expression and proteasome association of the 11S proteasome activator, and did not accumulate poly-ubiquitinated protein, activate the UPR or UPR-mediated apoptosis in response to bortezomib. The rate of protein biosynthesis was reduced, and the transcription of chaperone genes downmodulated. We did not observe major changes in the activities of TPPII, cathepsins or deubiquitinating proteases. We conclude that different types of bortezomib-adapted cell lines, including myeloma, show similar patterns of changes in the proteasomal machinery which result in residual proteasome activity in the presence of bortezomib and a quantitative balance between protein biosynthesis and destruction.
In melanoma, the PI3K-AKT-mTOR (AKT) and RAF-MEK-ERK (MAPK) signaling pathways are constitutively activated and appear to play a role in chemoresistance. Herein, we investigated the effects of pharmacological AKT and MAPK pathway inhibitors on chemosensitivity of melanoma cells to cisplatin and temozolomide. Chemosensitivity was tested by examining effects on growth, cell cycle, survival, expression of antiapoptotic proteins, and invasive tumor growth of melanoma cells in monolayer and organotypic culture, respectively. MAPK pathway inhibitors did not significantly increase chemosensitivity. AKT pathway inhibitors consistently enhanced chemosensitivity yielding an absolute increase of cell growth inhibition up to 60% (P<0.05, combination therapy vs monotherapy with inhibitors or chemotherapeutics). Cotreatment of melanoma cells with AKT pathway inhibitors and chemotherapeutics led to a 2- to 3-fold increase of apoptosis (P<0.05, combination therapy vs monotherapy) and completely suppressed invasive tumor growth in organotypic culture. These effects were associated with suppression of the antiapoptotic Bcl-2 family protein Mcl-1. These data suggest that inhibition of the PI3K-AKT-mTOR pathway potently increases sensitivity of melanoma cells to chemotherapy.
Proteasomal proteolysis relies on the activity of six catalytically active proteasomal subunits (b1, b2, b5, b1i, b2i and b5i). Applying a functional proteomics approach, we used a recently developed activity-based, cell-permeable proteasome-specific probe that for the first time allows differential visualization of individual active proteasomal subunits in intact primary cells. In primary leukemia samples, we observed remarkable variability in the amounts of active b1/1i-, b2/2i-and b5/5i-type of subunits, contrasting with their constant protein expression. Bortezomib inhibited b5-and b1-type, but to a lesser extend b2-type of subunits in live primary cells in vitro and in vivo. When we adapted the bortezomib-sensitive human acute myeloid leukemia cell line HL-60 to bortezomib 40 nM (HL-60a), proteasomal activity profiling revealed an upregulation of active subunits, and residual b1/b5-type of activity could be visualized in the presence of bortezomib 20 nM, in contrast to control cells. In a panel of cell lines from hematologic malignancies, the ratio between b2-type and (b1 þ b5)-type of active proteasomal polypeptides mirrored different degrees of bortezomib sensitivity. We thus conclude that the proteasomal activity profile varies in primary leukemia cells, and that the pattern of proteasomal subunit activity influences the sensitivity of hematologic malignancies toward bortezomib. Leukemia (2007) 21, 84-92.
Farnesyl transferase inhibitors (FTIs) inhibit the farnesylation of proteins, including RAS and RHEB (Ras homolog enriched in brain). RAS signals to the RAF-MEK-ERK (MAPK) and PI3K-AKT-mTOR (AKT) signaling pathways, which have a major role in melanoma progression. RHEB positively regulates mammalian target of rapamycin (mTOR). We investigated the effects of the FTI lonafarnib alone and in combination with MAPK (mitogen-activated protein kinase) or AKT (acutely transforming retrovirus AKT8 in rodent T-cell lymphoma) pathway inhibitors on proliferation, survival, and invasive tumor growth of melanoma cells. Lonafarnib alone did not sufficiently inhibit melanoma cell growth. Combinations of lonafarnib with AKT pathway inhibitors did not significantly increase melanoma cell growth inhibition. In contrast, combinations of lonafarnib with MAPK pathway inhibitors yielded additional growth-inhibiting effects. In particular, the combination of the FTI lonafarnib with the pan-RAF inhibitor sorafenib synergistically inhibited melanoma cell growth, significantly enhanced sorafenib-induced apoptosis, and completely suppressed invasive tumor growth in monolayer and organotypic cultures, respectively. Apoptosis induction was associated with upregulation of the endoplasmic reticulum stress-related transcription factors p8 and CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), and downregulation of the antiapoptotic Bcl-2 (B-cell lymphoma-2) family protein Mcl-1(myeloid cell leukemia 1). Lonafarnib did not affect MAPK and AKT but did affect mTOR signaling. Together, these findings suggest that the FTI lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells and may therefore represent an effective alternative for melanoma treatment.
The biosynthesis of immunoglobulin leads to constitutive endoplasmic reticulum (ER) stress in myeloma cells, which activates the unfolded protein response (UPR). The UPR promotes protein folding by chaperones and increases proteasomal degradation of misfolded protein. Excessive ER stress induces apoptosis and represents a molecular basis for the bortezomib sensitivity of myeloma. Most solid malignancies such as sarcoma, by contrast, are poorly bortezomib sensitive and display low levels of ER stress. We hypothesized that pharmacologic induction of ER stress might sensitize malignancies to bortezomib treatment. We show that the HIV protease inhibitor ritonavir induces ER stress in bortezomib-resistant sarcoma cells. Ritonavir triggered the UPR, decreased the degradation of newly synthesized protein, but did not directly inhibit proteasomal active sites in the therapeutic dose range in contrast to bortezomib. Whereas neither bortezomib nor ritonavir monotherapy translated into significant apoptosis at therapeutic drug levels, the combination strongly increased the level of ER stress and activated PERK, IRE1, and ATF6, synergistically induced CHOP, JNK, caspase-4, and caspase-9, and resulted in >90% apoptosis. In summary, ritonavir increases the level of ER stress induced by bortezomib, which sensitizes bortezomib-resistant cells to bortezomib-induced apoptosis. Ritonavir may therefore be tested clinically to improve the sensitivity of solid malignancies toward bortezomib treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.