The structure and physical properties of aqueous dispersions of 1,2-diacyl-sn-glycero-3-phosphoethanolamines (PE's) and their N-methylated analogues have been studied by scanning calorimetry, 31P nuclear magnetic resonance, and freeze-fracture electron microscopy. While successive N-methylations of a diacylphosphatidylethanolamine cause only modest decreases in its gel to liquid-crystalline phase transition temperature, the introduction of even a single N-methyl group sharply increases the temperature at which the lipid forms a hexagonal II phase. However, 31P nuclear magnetic resonance and electron microscopy show that unlike pure PE species, N-methylated PE's can form a variety of irregular nonlamellar structures at temperatures well below that at which a well-defined hexagonal II phase is formed. The rate of calcium-induced leakage of encapsulated carboxyfluorescein from large unilamellar vesicles composed of dioleoyl- or dielaidoylphosphatidylserine and the corresponding PE is strongly reduced when PE is replaced by N-methylated derivatives. The rate of calcium-induced intermixing of lipids of PE/phosphatidylserine (PS) vesicles steadily decreases as the PE component is successively replaced by its mono-, di-, and tri-N-methylated (phosphatidylcholine) derivatives. By correlating calorimetrically obtained phase diagrams with measurements of vesicle lipid intermixing, we conclude that dielaidoyl-N-methylphosphatidylethanolamine, like PE, can support direct interactions between the surfaces of PS/N-methyl-PE vesicles without lateral separation of a PS(Ca2+)-rich phase, while dielaidoyl-N,N-dimethyl-PE (and phosphatidylcholine) cannot.(ABSTRACT TRUNCATED AT 250 WORDS)
The effects of calcium on the mixing of synthetic diacylphosphatidylcholines (PC's) and diacylphosphatidylethanolamines (PE's) with the corresponding phosphatidic acids (PA's) have been examined by high-sensitivity differential scanning calorimetry and by measurements of the fluorescence of labeled PA or PC species in PA-PC bilayers. Calorimetrically derived phase diagrams for dimyristoyl- and dielaidoyl-substituted PA-PC and PA-PE mixtures indicate that these species are readily miscible in the absence of calcium but phase-separate very extensively in the presence of high levels of calcium (30 mM). The limiting solubilities of PA (Ca2+) in liquid-crystalline PC or PE bilayers are less than or equal to 10 and approximately 5 mol %, respectively, while approximately 20 mol % of PC or PE can be introduced into the "cochleate" phase of PA (Ca2+) before a distinct PC-rich (or PE-rich) phase appears. The kinetics of calcium-induced lateral phase separations were examined for dioleoyl- and dielaidoyl-substituted PA-PC unilamellar vesicles labeled with fluorescent (C12-NBD-acyl) PA or PC, whose fluorescence becomes partially quenched upon phase separation. Our results indicate that, for the PA-PC system, lateral phase separation is very rapid (approximately less than 1 s) after calcium addition and develops partially (possibly in only one face of the bilayer) when calcium is present only on one side of the bilayer. Moreover, phase separations can develop at a rate faster than that of vesicle diffusion when calcium is added to dilute suspensions of vesicles, suggesting that interbilayer contacts are not essential to promote phase separations.
The interactions of unilamellar vesicles containing phosphatidylcholine (PC) and phosphatidic acid (PA) in the presence of calcium and magnesium were examined by fluorometric assays of vesicle lipid mixing, contents mixing, and contents leakage and by spray-freezing freeze-fracture electron microscopy. These results were correlated with calorimetric and fluorometric measurements of divalent cation induced lateral segregation of lipids in these vesicles under comparable conditions. PA-PC vesicles in the presence of calcium show a rapid but limited intermixing of vesicle lipids and contents, the extent of which increases as the vesicle size decreases or the PA content increases. Calcium produces massive aggregation and efficient mixing of the contents of vesicles containing high proportions of dioleoyl-PA or egg PA, but vesicle coalescence in the latter case is followed rapidly by vesicle collapse and massive leakage of contents. The effects of magnesium are similar for vesicles of very high PA content. However, in the presence of magnesium, vesicles containing lower amounts of PA exhibit "hemifusion", a mode of interaction in which vesicles aggregate and mix approximately 50% of their lipids, apparently representing the lipids of the outer monolayer of each vesicle, without significant mixing of vesicle contents or collapse of the vesicles. Fluorometric measurements of lipid lateral segregation demonstrate that lateral redistribution of lipids in PA-PC vesicles begins at submillimolar concentrations of divalent cations and shows no abrupt change at the "threshold" divalent cation concentration, above which coalescence of vesicles is observed. By correlating calorimetric and fluorometric measurements of lipid lateral segregation and mixing of vesicle components, we can demonstrate that lipid segregation is at least strongly correlated with calcium-promoted coalescence of PA-PC vesicles and is essential to the magnesium-promoted interactions of vesicles of low PA contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.