With the increasing prevalence of end stage renal disease there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes, in the setting of uremia, systemic inflammation, oxidative stress and preexistent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis, as well as development of neointimal hyperplasia (NIH) that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to NIH involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure, based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure requires a multidisciplinary approach involving nephrologists, vascular surgeons and interventional radiologists, allowing careful patient selection and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.
Low rates of arteriovenous fistula (AVF) maturation prevent optimal fistula use for hemodialysis; however, the mechanism of venous remodeling in the fistula environment is not well understood. We hypothesized that the embryonic venous determinant Eph-B4 mediates AVF maturation. In human AVF and a mouse aortocaval fistula model, Eph-B4 protein expression increased in the fistula vein; expression of the arterial determinant Ephrin-B2 also increased. Stimulation of Eph-B-mediated signaling with Ephrin-B2/Fc showed improved fistula patency with less wall thickness. Mutagenesis studies showed that tyrosine-774 is critical for Eph-B4 signaling and administration of inactive Eph-B4-Y774F increased fistula wall thickness. Akt1 expression also increased in AVF; Akt1 knockout mice showed reduced fistula diameter and wall thickness. In Akt1 knockout mice, stimulation of Eph-B signaling with Ephrin-B2/Fc showed no effect on remodeling. These results show that AVF maturation is associated with acquisition of dual arteriovenous identity; increased Eph-B activity improves AVF patency. Inhibition of Akt1 function abolishes Eph-B-mediated venous remodeling suggesting that Eph-B4 regulates AVF venous adaptation through an Akt1-mediated mechanism.
ircadian ocomotorutput yclesaput (CLOCK) is a transcription factor that activates transcription of clock-controlled genes by heterodimerizing with BMAL1 and binding to E-box elements on DNA. Although several phosphorylation sites on CLOCK have already been identified, this study characterizes a novel phosphorylation site at serine 845 (Ser-836 in humans). Here, we show that CLOCK is a novel AKT substrate and in cells, and this phosphorylation site is a negative regulator of CLOCK nuclear localization by acting as a binding site for 14-3-3 proteins. To examine the role of CLOCK phosphorylation, knockin mice were generated using CRISPR/Cas9 technology. mice are essentially normal with normal central circadian rhythms and hemodynamics. However, examination of core circadian gene expression from peripheral tissues demonstrated that mice have diminished expression of and in skeletal muscle and, and in the liver during the circadian cycle. The reduction in levels is associated with reduced H3K9ac at E-boxes where CLOCK binds despite no change in total CLOCK levels. Thus, CLOCK phosphorylation by AKT on Ser-845 regulates its nuclear translocation and the expression levels of certain core circadian genes in insulin-sensitive tissues.
Neuropilins (NRP) are cell surface receptors for VEGF and SEMA3 family members. The role of NRP in neurons and endothelial cells has been investigated, but the expression and role of NRP in epithelial cells is much less clear. Herein, the expression and localization of neuropilin 1 (NRP1) was investigated in human and mouse skin and squamous cell carcinomas (SCC). Results indicated that NRP1 mRNA and protein was expressed in the suprabasal epithelial layers of skin sections. NRP1 staining did not overlap with that of keratin 14 (K14) or proliferating cell nuclear antigen, but did colocalize with staining for keratin 1, indicating that differentiated keratinocytes express NRP1. Similar to the expression of NRP1, VEGF-A was expressed in suprabasal epithelial cells, whereas Nrp2 and VEGFR2 were not detectable in the epidermis. The expression of NRP1 correlated with a high degree of differentiation in human SCC specimens, human SCC xenografts, and mouse K14-HPV16 transgenic SCC. UVB irradiation of mouse skin induced Nrp1 upregulation. In vitro, Nrp1 was upregulated in primary keratinocytes in response to differentiating media or EGF-family growth factors. In conclusion, the expression of NRP1 is regulated in the skin and is selectively produced in differentiated epithelial cells. NRP1 may function as a reservoir to sequester VEGF ligand within the epithelial compartment, thereby modulating its bioactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.