Barriers associated with direct muscle quantification have prevented a consistent implementation of therapeutic measures for sarcopenia. Recently, the relevance of circulating C-terminal agrin fragment (CAF) as an accessible screening method alternative for sarcopenia has gained credence. Accordingly, this study aimed to verify the pertinence of plasma CAF as a biomarker for sarcopenia. Three-hundred healthy adults aged between 50-83 years took part in this study. Sarcopenia was diagnosed according to the European Working Group on Sarcopenia in Older People criteria. Body composition was assessed using dual-energy x-ray absorptiometry, while muscle strength was examined using hand dynamometry. Plasma CAF concentrations were determined using a commercially available ELISA kit. CAF concentrations were significantly associated with appendicular lean mass (ALM), but not grip strength (p=0.028, p=0.575, respectively). Plasma CAF concentrations were significantly elevated in sarcopenic individuals compared to non-sarcopenic (p<0.001). Overall, individuals with low grip strength or low ALM displayed significantly higher CAF levels compared to healthy controls, after adjusting for age and body mass index (p=0.027, p=0.003, respectively). In males, those with low grip strength or low ALM had significantly elevated CAF levels (p=0.039, p=0.027, respectively), while in females, only those with low ALM had significantly raised CAF concentrations, compared to healthy controls (p=0.035). Our findings illuminate the potential relevance of CAF as an accessible biomarker for skeletal muscle health. CAF determination may enhance clinical practise by facilitating more widespread treatment strategies for sarcopenia. Nevertheless, future research is needed to confirm the diagnostic pertinence of CAF concentrations in screening for sarcopenia.
The age-related decline in skeletal muscle mass, strength and function known as '
Weak grip strength is a strong predictor of multiple adverse health outcomes and an integral diagnostic component of sarcopenia. However, the limited availability of normative data for certain populations impedes the interpretation of grip performance across adulthood. This study aimed to establish normative data and low grip strength thresholds in a large adult population, and to examine associations between grip strength and clinically relevant health variables. A total of 9431 adults aged between 18 and 92 years participated in this study (mean age: 44.8 ± 13.4 years; 57% females). Grip strength, body composition, and cardiorespiratory (CR) fitness were assessed using hand dynamometry, dual-energy x-ray absorptiometry and physical work capacity tests, respectively. Low grip strength was established according to criteria of the European Working Group on Sarcopenia in Older People. Normative data and t-scores, stratified by sex and age groups, are presented. Grip performance was associated with lean mass, skeletal muscle index (SMI), fat mass, CR fitness, bone mineral density (BMD), android/gynoid ratio, disease prevalence and physical activity levels (all p < 0.001) after controlling for multiple potential confounders. Individuals with weak grip strength had lower lean mass, SMI, CR fitness (all p < 0.001) and BMD (p = 0.001), and higher disease prevalence (p < 0.001), compared to healthy controls, although sex-specific differences were observed. Grip strength has practical screening utility across a range of health domains. The normative data and grip strength thresholds established in this study can guide the clinical interpretation of grip performance and facilitate timely therapeutic strategies targeting sarcopenia.
Age-related skeletal muscle degradation known as ‘sarcopenia’ exerts considerable strain on public health systems globally. While the pathogenesis of such atrophy is undoubtedly multifactorial, disruption at the neuromuscular junction (NMJ) has recently gained traction as a key explanatory factor. The NMJ, an essential communicatory link between nerve and muscle, undergoes profound changes with advancing age. Ascertaining whether such changes potentiate the onset of sarcopenia would be paramount in facilitating a timely implementation of targeted therapeutic strategies. Hence, there is a growing level of importance to further substantiate the effects of age on NMJs, in parallel with developing measures to attenuate such changes. As such, this review aimed to establish the current standpoint on age-related NMJ deterioration and consequences for skeletal muscle, while illuminating a role for biomarkers and exercise in ameliorating these alterations. Recent insights into the importance of key biomarkers for NMJ stability are provided, while the stimulative benefits of exercise in preserving NMJ function are demonstrated. Further elucidation of the diagnostic and prognostic relevance of biomarkers, coupled with the therapeutic benefits of regular exercise may be crucial in combatting age-related NMJ and skeletal muscle degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.