The muscular dystrophies are rare orphan diseases, characterized by progressive muscle weakness: the most common and well known is Duchenne muscular dystrophy which affects young boys and progresses quickly during childhood. However, over 70 distinct variants have been identified to date, with different rates of progression, implications for morbidity, mortality, and quality of life. There are presently no curative therapies for these diseases, but a range of potential therapies are presently reaching the stage of multi-centre, multi-national first-in-man clinical trials. There is a need for sensitive, objective end-points to assess the efficacy of the proposed therapies. Present clinical measurements are often too dependent on patient effort or motivation, and lack sensitivity to small changes, or are invasive. Quantitative MRI to measure the fat replacement of skeletal muscle by either chemical shift imaging methods (Dixon or IDEAL) or spectroscopy has been demonstrated to provide such a sensitive, objective end-point in a number of studies. This review considers the importance of the outcome measures, discusses the considerations required to make robust measurements and appropriate quality assurance measures, and draws together the existing literature for cross-sectional and longitudinal cohort studies using these methods in muscular dystrophy.
Diffusion tensor imaging (DTI) is a popular method to assess differences in fiber organization in diseased and healthy muscle tissue. Previous work has shown that muscle DTI measurements depend on signal‐to‐noise ratio (SNR), %fat, and tissue T2. The goal of this study was to evaluate the potential biasing effects of these factors on skeletal muscle DTI data in patients with Duchenne Muscular Dystrophy (DMD). MR images were obtained of the right lower leg of 21 DMD patients and 12 healthy controls on a Philips 3T system. DTI measurements were combined with quantitative in‐vivo measures of mean water T2, %fat and SNR to evaluate their effect on DTI parameter estimation. All outcome measures were determined within ROIs drawn for six lower leg muscles. Between group analysis, using all ROIs, revealed a significantly elevated FA in the GCL, SOL and PER muscles (p<0.05) and an increased mean diffusivity (p<0.05) and λ3 (p<0.05) in the TA muscle of DMD patients. In‐vivo evaluation of the individual confounders showed behaviour in line with predictions from previous simulation work. To account for these confounders, subsequent analysis used only ROIs with SNR greater than 20. With this criterion we found significantly greater MD in the TA muscle of DMD patient (p<0.009) and λ3 in the TA and GCL muscles (p<0.001) of DMD patients, but no differences in FA. As both increased %fat and lower SNR are expected to reduce the apparent MD and λ3, these between‐group differences are likely due to pathophysiology. However, the increased FA, observed when using all ROIs, likely reflects the effect of low SNR and %fat on the DTI parameter estimation. These findings suggest that measuring mean water T2, %fat and SNR is essential to ascribe changes in DTI measures to intrinsic diffusion changes or to confounding influences. Copyright © 2015 John Wiley & Sons, Ltd.
Quantitative MRI and MRS are increasingly important as non-invasive outcome measures in therapy development for Duchenne muscular dystrophy (DMD). Many studies have focussed on individual measures such as fat fraction and metabolite levels in relation to age and functionality, but much less attention has been given to how these indices relate to each other. Here, we assessed spatially resolved metabolic changes in leg muscles of DMD patients, and classified muscles according to the degree of fat replacement compared with healthy controls. Quantitative MRI (three-point Dixon and multi-spin echo without fat suppression and a tri-exponential fit) and 2D-CSI P MRS scans were obtained from 18 DMD patients and 12 healthy controls using a 3 T and a 7 T MR scanner. Metabolite levels, T values and fat fraction were individually assessed for five lower leg muscles. In muscles with extensive fat replacement, phosphodiester over adenosine triphosphate (PDE/ATP), inorganic phosphate over phosphocreatine, intracellular tissue pH and T were significantly increased compared with healthy controls. In contrast, in muscles without extensive fat replacement, only PDE/ATP and T values were significantly elevated. Overall, our results show that PDE levels and T values increase prior to the occurrence of fat replacement and remain elevated in later stages of the disease. This suggests that these individual measures could not only function as early markers for muscle damage but also reflect potentially reversible pathology in the more advanced stages.
The purpose of this study was to evaluate temporal stability, multi‐center reproducibility and the influence of covariates on a multimodal MR protocol for quantitative muscle imaging and to facilitate its use as a standardized protocol for evaluation of pathology in skeletal muscle. Quantitative T2, quantitative diffusion and four‐point Dixon acquisitions of the calf muscles of both legs were repeated within one hour. Sixty‐five healthy volunteers (31 females) were included in one of eight 3‐T MR systems. Five traveling subjects were examined in six MR scanners. Average values over all slices of water‐T2 relaxation time, proton density fat fraction (PDFF) and diffusion metrics were determined for seven muscles. Temporal stability was tested with repeated measured ANOVA and two‐way random intraclass correlation coefficient (ICC). Multi‐center reproducibility of traveling volunteers was assessed by a two‐way mixed ICC. The factors age, body mass index, gender and muscle were tested for covariance. ICCs of temporal stability were between 0.963 and 0.999 for all parameters. Water‐T2 relaxation decreased significantly (P < 10−3) within one hour by ~ 1 ms. Multi‐center reproducibility showed ICCs within 0.879–0.917 with the lowest ICC for mean diffusivity. Different muscles showed the highest covariance, explaining 20–40% of variance for observed parameters. Standardized acquisition and processing of quantitative muscle MRI data resulted in high comparability among centers. The imaging protocol exhibited high temporal stability over one hour except for water T2 relaxation times. These results show that data pooling is feasible and enables assembling data from patients with neuromuscular diseases, paving the way towards larger studies of rare muscle disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.