Abstract. The Fast Infrared Hygrometer (FIRH), employing open-path tunable diode laser absorption spectroscopy at the wavelengths near the 1364.6896 nm line, was adapted to perform contactless humidity measurements at the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T), a unique turbulent moist-air wind tunnel. The configuration of the setup allows for scanning from outside the walls of the wind tunnel and at various positions without the need for repeated optics adjustments. We identified three factors which significantly influence the measurement – self-broadening of the absorption line, interference in the glass windows and parasitic absorption in the ambient air outside the wind tunnel – and developed correction methods which satisfactorily account for these effects. The comparison between FIRH and a reference hygrometer (dew-point mirror MBW 973) indicated a good agreement within the expected errors across the wide range of water vapour concentration 1.0–6.1×1017 cm−3 (equivalent to dew-point temperature of −5.4 to +21 ∘C at the temperature of 23 ∘C). High temporal resolution (∼2 kHz) allowed for studying turbulent fluctuations in the course of intensive mixing of two air streams which had the same mean velocity but differed in temperature and humidity, also including the settings for which the mixture can be supersaturated. The obtained results contribute to improved understanding and interpretation of cloud formation studies conducted in LACIS-T by complementing the previous characterizations of turbulent velocity and temperature fields inside the wind tunnel.
Abstract. The Fast Infrared Hygrometer (FIRH), employing open-path tunable diode laser absorption spectroscopy at the wavelengths near 1364.6896 nm line, was adapted to perform contactless humidity measurements at the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T), a unique turbulent moist-air wind tunnel. The configuration of the setup allows for scanning at various positions without the need for repeated optics adjustments. We identified three factors which significantly influence the measurement – self-broadening of the absorption line, interference in the glass windows and parasitic absorption in the ambient air outside the tunnel – and developed correction methods which satisfactorily account for these effects. The comparison between FIRH and a reference hygrometer (dew-point mirror MBW 973) indicated a good agreement within the expected errors across the wide range of water vapor concentration 1.0 . . . 6.1 cm−3 (equivalent to dew-point temperature of −5.4 . . . + 21 °C at the temperature of 23 °C). High temporal resolution (∼2 kHz) allowed for studying turbulent fluctuations in the course of intensive mixing of two air streams which had the same mean velocity but differed in temperature and humidity, including also the settings for which the mixture can be supersaturated. The obtained results complement the previous characterizations of turbulent velocity and temperature fields in LACIS-T. The variance of water vapor concentration exhibits a maximum in the center of the mixing zone which coincides with the steepest gradient.
No abstract
<p>A narrow-band optical hygrometer FIRH (Fast Infrared Hygrometer, Nowak et al., 2016), based on absorption of laser light at wavelength &#955;=1364.6896 nm was used for contactless measurements of humidity inside the measurement volume of LACIS-T (turbulent Leipzig Aerosol Cloud Interaction Simulator, Niedermeier et al., 2020). LACIS-T is a multi-purpose moist-air wind tunnel for investigating atmospherically relevant interactions between turbulence and cloud microphysical processes under well-defined and reproducible laboratory conditions. Main goals of the experiment were:</p><p>1) characterization and evaluation of the FIRH hygrometer in controlled conditions,</p><p>2) characterization of fast turbulent humidity fluctuations inside LACIS-T.</p><p>&#160;</p><p>Collected results indicate, that FIRH can be used to characterize turbulent fluctuations of humidity in scales of tens of centimeters with the temporal resolution of 2 kHz and presumably more. Interestingly, scanning of LACIS-T measurement volume indicated existence of turbulence and wave-like features for the investigated measurement setup in its &#160;central part, where air streams of different thermodynamical properties, yet the same mean velocity mix intensively. , However, the setup for cloud measurements include an additional flow (i.e., an aerosol flow) in the central part strongly reducing the wave-like features. In other words, cloud process studies are most likely unaffected by these features.</p><p>Finally, the experiments proved that contactless measurements of humidity conducted from outside the measurement volume of LACIS-T are useful, on condition of corrections of glass window transmission and interferences.</p><p>&#160;</p><p>Niedermeier, D., Voigtl&#228;nder, J., Schmalfu&#223;, S., Busch, D., Schumacher, J., Shaw, R. A., and Stratmann, F. (2020): Characterization and first results from LACIS-T: a moist-air wind tunnel to study aerosol&#8211;cloud&#8211;turbulence interactions, Atmos. Meas. Tech., 13, 2015-2033, doi:10.5194/amt-13-2015-2020.</p><p>Nowak J., Magryta P., Stacewicz T., Kumala W., Malinowski S.P., 2016: Fast optoelectronic sensor of water concentration, Optica Applicata, vol. 46(4) , pp. 607-618 , doi: 10.5277/oa160408</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.