Abstract. The present study evaluated effects of exercise training on the proprioception sensitivity, postural stability, and the likelihood of slip-induced falls. Eighteen older adults (6 in balance, 6 in weight, and 6 in control groups) participated in this study. Three groups met three times per week over the course of eight weeks. Ankle and knee proprioception sensitivities and postural stability were measured. Slip-induced events were introduced for all participants before and after training. The results indicated that, overall, strength and postural stability were improved only in the training group, although proprioception sensitivity was improved in all groups. Training for older adults resulted in decreased likelihood of slipinduced falls. The study suggested that proprioception can be improved by simply being active, however, the results suggested that training would aid older adults in reducing the likelihood of slip-induced falls.
BACKGROUND: Most fall intervention studies attempted to improve the mobility, range of motion of upper and lower extremities, or all major muscle strengths. Yet, there has been little effort to identify movements or actions that may be mainly responsible for recovering from a slipping. It was imperative to link lower extremity kinematics in conjunction with the functional anatomy of lower extremity muscles during forward heel-slipping to identify what muscles should have been activated substantially if a person would have recovered from forward heel-slipping. OBJECTIVE: The present study investigated lower extremity movements, such as the ankle, knee, and hip rotations, which could contribute to falls from forward heel-slipping. Determining changes in positions of foot, shank, and thigh during slipping would provide information to develop the optimal training regimen or interventions that may be effective for improving a chance to recover from the postural disturbance. METHODS: Twenty healthy adults (24–68 years old) participated in this experiment. Among twenty participants, only eight participants’ data were analyzed in this study. The 3D position data were used to compute the sagittal foot, shank, and thigh angles and frontal thigh angle. RESULTS: The study results indicated that, during the period of slipping, the angles of the segments of the slipping leg were different from that of the foot, shank, and thigh when walking ordinarily over the dry surface in the present study. CONCLUSIONS: The characteristics or differences in the angular kinematics of lower extremity during unexpected slips in the present study demonstrate possible causes for slip-induced falls.
BACKGROUND: Dancesport is a popular activity among older adults who look for fun and fitness in Korea. Studies reported positive sociological and psychological effects of dancesport. But, little studies were performed to evaluate the effects of dancesport on balance performances.OBJECTIVE: The objective of the present study was to evaluate the effects of dancesport for 15 weeks on walking balance and standing balance of older adults.METHODS: Older adults regularly participated in the dancesport program 3 times a week for 15 weeks. The program included Rumba, Cha-cha-cha, and Jive. They exercised the prescribed dancesport at intermediate level for 50–60 mins for each time. A total 22 reflective markers were placed on the anatomical landmarks and 8 cameras were used to measure 3-D positions of participants. Also, center of pressure (COP) data were measured to analyze standing balance using a ground reaction board at 1200 Hz for 30 seconds. One-way analysis of variance (ANOVA) was performed to test the effects of 15 weeks of dancesport on walking balance and standing balance.RESULTS: The results suggested that, after 15 weeks of dancesport participation, older adults’ walking balance (48.3 ± 20.3 cm2 vs 38.2 ± 18.2 cm2) and standing balance (COP area: 189.4 ± 85.4 mm2 vs 103.5 ± 55.4mm2, COP distance: 84.2 ± 34.4 cm vs 76.5 ± 21.4 cm) were significantly improved.CONCLUSION: Performing dancesport would require moving center of mass rapidly and frequently while maintaining posture. This may result in improving walking balance and standing balance in the present study. The study concluded that dancesport would be an effective exercise method in enhancing postural stability of older adults.
Monitoring of activities of daily living (ADL) using wearable sensors can provide an objective indication of the activity levels or restrictions experienced by patients or elderly. The current study presented a two-sensor ADL classification method designed and tested specifically with elderly subjects. Ten healthy elderly were involved in a laboratory testing with 6 types of daily activities. Two inertial measurement units were attached to the thigh and the trunk of each subject. The results indicated an overall rate of misdetection being 2.8%. The findings of the current study can be used as the first step towards a more comprehensive activity monitoring technology specifically designed for the aging population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.