Senescence secretome was recently reported to promote liver cancer in an obese mouse model. Steatohepatitic hepatocellular carcinoma (SH-HCC), a new variant of HCC, has been found in metabolic syndrome patients, and pericellular fibrosis, a characteristic feature of SH-HCC, suggests that alteration of the tumor stroma might play an important role in SH-HCC development. Clinicopathological characteristics and tumor stroma showing senescence and senescence-associated secretory phenotype (SASP) were investigated in 21 SH-HCCs and 34 conventional HCCs (C-HCCs). The expression of α-smooth muscle actin (α-SMA), p21Waf1/Cif1, γ-H2AX, and IL-6 was investigated by immunohistochemistry or immunofluorescence. SH-HCCs were associated with older age, higher body mass index, and a higher incidence of metabolic syndrome, compared to C-HCC (P <0.05, all). The numbers of α-SMA-positive cancer-associated fibroblasts (CAFs) (P = 0.049) and α-SMA-positive CAFs co-expressing p21Waf1/Cif1 (P = 0.038), γ-H2AX (P = 0.065), and IL-6 (P = 0.048) were greater for SH-HCCs than C-HCCs. Additionally, non-tumoral liver from SH-HCCs showed a higher incidence of non-alcoholic fatty liver disease and a higher number of α-SMA-positive stellate cells expressing γ-H2AX and p21Waf1/Cif1 than that from C-HCCs (P <0.05, all). In conclusion, SH-HCCs are considered to occur more frequently in metabolic syndrome patients. Therein, senescent and damaged CAFs, as well as non-tumoral stellate cells, expressing SASP including IL-6 may contribute to the development of SH-HCC.
Tumor behavior is affected by the tumor microenvironment, composed of cancer-associated fibroblasts (CAFs). Meanwhile, hepatocellular carcinomas (HCC) with fibrous stroma reportedly exhibit aggressive behavior suggestive of tumor-stroma interaction. However, evidence of the crosstalk remains unclear. In this study, CCN2, epithelial membrane antigen (EMA), fibroblast activation protein (FAP), and keratin 19 (K19) expression was studied in 314 HCCs (cohort 1), 42 scirrhous HCCs (cohort 2), and 36 chronic hepatitis/cirrhosis specimens by immunohistochemistry. Clinicopathological parameters were analyzed according to the expressions of these markers. In tumor epithelial cells from cohort 1, CCN2 and EMA were expressed in 15.3% and 17.2%, respectively, and their expressions were more frequent in HCCs with fibrous stroma (≥5% of tumor area) than those without (P<0.05 for all); CCN2 expression was well correlated with K19 and EMA expression. In tumor stromal cells, FAP expression was found in 6.7%. In cohort 2, CCN2, EMA, and FAP expression was noted in 40.5%, 40.5%, and 66.7%, respectively, which was more frequent than that in cohort 1 (P<0.05 for all). Additionally, EMA expression was associated with the expression of K19, CCN2, and FAP (P<0.05 for all); EMA expressing tumor epithelial cells showed a topographic closeness to FAP-expressing CAFs. Analysis of disease-free survival revealed CCN2 expression to be a worse prognostic factor in both cohort 1 (P = 0.005) and cohort 2 (P = 0.023), as well as EMA as a worse prognostic factor in cohort 2 (P = 0.048). In conclusion, expression of CCN2, EMA, and FAP may be involved in the activation of CAFs in HCC, giving rise to aggressive behavior. Significant correlation between EMA-expressing tumor cells and FAP-expressing CAFs and their topographic closeness suggests possible cross-talk between tumor epithelial cells and stromal cells in the tumor microenvironment of HCC.
BackgroundHepatocellular carcinomas (HCCs) expressing stemness markers are characterized by an aggressive behavior, which might be promoted by an altered tumor stroma. Transarterial chemoembolization (TACE) induces severe hypoxia, and its effect on stemness and tumor stroma of HCCs remains unclear. The purpose of this study was to evaluate the sequential changes of stemness and tumor stroma under TACE-induced hypoxia using biopsy and resection-matched HCCs.MethodsForty-six biopsy and resection matched HCCs including 10 cases with and 36 cases without preoperative TACE were selected. Immunohistochemistry for stemness (keratin 19 [K19], epithelial cell adhesion molecule [EpCAM], and CD133), hypoxia (carbonic anhydrase IX [CAIX] and vascular endothelial growth factor [VEGF]), and tumor stromal (α-smooth muscle actin [α-SMA] and fibroblast activation protein [FAP]) markers were performed and compared in matched biopsied and resected HCCs with and without TACE.ResultsThe accuracy of K19, EpCAM, CD133, CAIX, VEGF, α-SMA and FAP detected on biopsied HCCs was 64% ∼ 86%, using the expression status in resected HCCs as a reference standard in non-TACE group. The sequential change of hypoxia, stemness and stromal marker expression in matched biopsied and resected HCC was greater in TACE group than in non-TACE group (P < 0.05 for all). The degree of stemness marker expression was well correlated with those of tumor stromal markers, and the degree of CAIX expression was well correlated with that of K19 (P < 0.05).ConclusionsStemness marker expression is considered to be increased along with tumor stromal alteration under TACE-induced hypoxia, which might promote the aggressive biology of HCC.
BackgroundTelomere dysfunction is important in carcinogenesis, and recently, stathmin and elongation factor 1α (EF1α) were reported to be up-regulated in telomere dysfunctional mice.MethodsIn the present study, the expression levels of stathmin and EF1α in relation to telomere length, telomere dysfunction-induced foci (TIF), γ-H2AX, and p21WAF1/CIP1 expression were assessed in specimens of hepatitis B virus (HBV)-related multistep hepatocarcinogenesis, including 13 liver cirrhosis specimens, 14 low-grade dysplastic nodules (DN), 17 high-grade DNs, and 14 hepatocellular carcinomas (HCC). Five normal liver specimens were used as controls. TIF were analyzed by telomere fluorescent in situ hybridization (FISH) combined with immunostaining, while the protein expressions of stathmin, EF1α, γ-H2AX, and p21WAF1/CIP1 were detected by immunohistochemistry.ResultThe expressions of stathmin and EF1α gradually increased as multistep hepatocarcinogenesis progressed, showing the highest levels in HCC. Stathmin mRNA levels were higher in high-grade DNs than normal liver and liver cirrhosis, whereas EF1α mRNA expression did not show such a difference. The protein expressions of stathmin and EF1α were found in DNs of precancerous lesions, whereas they were absent or present at very low levels in normal liver and liver cirrhosis. Stathmin histoscores were higher in high-grade DNs and low-grade DNs than in normal liver (all, P < 0.05). EF1α histoscores were higher in high-grade DNs than in normal liver and liver cirrhosis (all, P < 0.05). Stathmin mRNA levels and histoscores, as well as EF1α histoscores (but not mRNA levels), were positively correlated with telomere shortening and γ-H2AX labeling index (all, P < 0.05). EF1α histoscores were also positively correlated with TIF (P < 0.001). Significantly greater inactivation of p21WAF1/CIP1 was observed in low-grade DNs, high-grade DNs, and HCC, compared to liver cirrhosis (all, P < 0.05). p21WAF1/CIP1 labeling index was inversely correlated with TIF, stathmin mRNA level, and EF1α histoscore (all, P < 0.05).ConclusionStathmin and EF1α are suggested to be closely related to telomere dysfunction, DNA damage, and inactivation of p21WAF1/CIP1 in HBV-related multistep hepatocarcinogenesis. Accordingly, assessment of stathmin and EF1α levels as a reflection of telomere dysfunction may be helpful in evaluating the biological characteristics of precancerous hepatic nodules in hepatitis B viral cirrhotic patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.