Low aLM/BMI is associated with significantly increased likelihood of MetS in Australian adults, but not Koreans, suggesting potential differences in effects of low muscle mass relative to body mass on cardiometabolic health in Caucasian and Asian middle-aged and older adults. Low muscle mass relative to height is associated with reduced likelihood of MetS in both populations.
ObjectivesSarcopenia and visceral obesity have been suggested to aggravate each other, resulting in a vicious cycle. However, evidence based on prospective study is very limited. Our purpose was to investigate whether visceral fat promotes a decrease in skeletal muscle mass and vice versa.MethodsWe observed changes in anthropometric and body composition data during a follow-up period of 27.6±2.8 months in 379 Korean men and women (mean age 51.9±14.6 years) from the Korean Sarcopenic Obesity Study (KSOS). Appendicular lean soft tissue (ALST) mass was calculated using dual-energy X-ray absorptiometry, and visceral fat area (VFA) was measured using computed tomography at baseline and follow-up examination.ResultsALST mass significantly decreased, whereas trunk and total fat mass increased in both men and women despite no significant change in weight and body mass index. In particular, women with visceral obesity at baseline had a greater decrease in ALST mass than those without visceral obesity (P = 0.001). In multiple linear regression analysis, baseline VFA was an independent negative predictor of the changes in ALST after adjusting for confounding factors including age, gender, life style and body composition parameters, insulin resistance, high sensitivity C-reactive protein and vitamin D levels (P = 0.001), whereas the association between baseline ALST mass and changes in VFA was not statistically significant (P = 0.555).ConclusionsThis longitudinal study showed that visceral obesity was associated with future loss of skeletal muscle mass in Korean adults. These results may provide novel insight into sarcopenic obesity in an aging society.
Application launch performance is of great importance to system platform developers and vendors as it greatly affects the degree of users' satisfaction. The single most effective way to improve application launch performance is to replace a hard disk drive (HDD) with a solid state drive (SSD), which has recently become affordable and popular. A natural question is then whether or not to replace the traditional HDD-aware application launchers with a new SSD-aware optimizer. We address this question by analyzing the inefficiency of the HDD-aware application launchers on SSDs and then proposing a new SSD-aware application prefetching scheme, called the Fast Application STarter (FAST). The key idea of FAST is to overlap the computation (CPU) time with the SSD access (I/O) time during an application launch. FAST is composed of a set of user-level components and system debugging tools provided by Linux OS (operating system). Hence, FAST can be easily deployed in any recent Linux versions without kernel recompilation. We implement FAST on a desktop PC with an SSD running Linux 2.6.32 OS and evaluate it by launching a set of widely-used applications, demonstrating an average of 28% reduction of application launch time as compared to PC without a prefetcher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.