Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes and survives by evading host cell defense mechanisms. Recently, molecular interactions between E. chaffeensis 47-kDa tandem repeat (TR) protein (TRP47) and the eukaryotic host cell have been described. In this investigation, yeast (Saccharomyces cerevisiae) two-hybrid analysis demonstrated that E. chaffeensis-secreted tandem repeat protein 120 (TRP120) interacts with a diverse group of host cell proteins associated with major biological processes, including transcription and regulation, cell signaling, protein trafficking, and actin cytoskeleton organization. Twelve target proteins with the highest frequency of interaction with TRP120 were confirmed by cotransformation in yeast. Host targets, including human immunoglobulin lambda locus (IGL), cytochrome c oxidase subunit II (COX2), Golgi-associated gamma adaptin ear-containing ARF binding protein 1 (GGA1), polycomb group ring finger 5 (PCGF5), actin gamma 1 (ACTG1), and unc-13 homolog D (UNC13D; Caenorhabditis elegans), colocalized strongly with TRP120 in HeLa cells and with E. chaffeensis dense-cored morulae and areas adjacent to morulae in the host cytoplasm. The TR domain of TRP120 interacted only with PCGF5, indicating that distinct TRP120 domains contribute to specific host target interactions and that multiple domains are required to reconstitute TRP120 interactions with other host targets. Three previously defined molecular interactions between TRP47 and host proteins, PCGF5, IGLL1, and CAP1, were also associated with TRP120, demonstrating that molecular cross talk occurs between Ehrlichia TRPs and host targets. These findings further support the role of TRPs as effectors that reprogram the host cell.
Ehrlichiae are obligately intracellular bacteria that reside and replicate in phagocytes by circumventing host cell defenses and modulating cellular processes, including host cell gene transcription. However, the mechanisms by which ehrlichiae influence host gene transcription have largely remained undetermined. Numerous ankyrin and tandem repeat-containing proteins associated with host-pathogen interactions have been identified in Ehrlichia species, but their roles in pathobiology are unknown. In this study, we determined by confocal immunofluorescence microscopy and by immunodetection in purified nuclear extracts that the ankyrin repeat-containing protein p200 is translocated to the nuclei of Ehrlichia-infected monocytes. Chromatin immunoprecipitation (ChIP) with DNA sequencing revealed an Ehrlichia chaffeensis p200 interaction located within host promoter and intronic Alu-Sx elements, the most abundant repetitive elements in the human genome. A specific adenine-rich (mid-A-stretch) motif within Alu-Sx elements was identified using electrophoretic mobility shift and NoShift assays. Whole-genome analysis with ChIP and DNA microarray analysis (ChIP-chip) determined that genes (n ؍ 456) with promoter Alu elements primarily related to transcription, apoptosis, ATPase activity, and structural proteins associated with the nucleus and membrane-bound organelles were the primary targets of p200. Several p200 target genes (encoding tumor necrosis factor alpha, Stat1, and CD48) associated with ehrlichial pathobiology were strongly upregulated during infection, as determined by quantitative PCR. This is the first study to identify a nuclear translocation of bacterially encoded protein by E. chaffeensis and to identify a specific binding motif and genes that are primary targets of a novel molecular strategy to reprogram host cell gene expression to promote survival of the pathogen.Ehrlichia chaffeensis and Ehrlichia canis are obligately intracellular bacteria that reside and replicate within cytoplasmic vacuoles in mononuclear phagocytes. Ehrlichiae are maintained in nature by persistent infection of vertebrate hosts and are transmitted by arthropods (ticks), and thus, their existence requires adaptation to host-specific environments and evasion of both innate and adaptive immune mechanisms (48,49,53).
Ehrlichia chaffeensis is an obligately intracellular bacterium that exhibits tropism for mononuclear phagocytes forming cytoplasmic membrane-bound microcolonies called morulae. To survive and replicate within phagocytes, E. chaffeensis exploits the host cell by modulating a number of host cell processes, but the ehrlichial effector proteins involved are unknown. In this study, we determined that p47, a secreted, differentially expressed, tandem repeat (TR) protein, interacts with multiple host proteins associated with cell signaling, transcriptional regulation, and vesicle trafficking. Yeast two-hybrid analysis revealed that p47 interacts with polycomb group ring finger 5 (PCGF5) protein, Src protein tyrosine kinase FYN (FYN), protein tyrosine phosphatase non-receptor type 2 (PTPN2), and adenylate cyclase-associated protein 1 (CAP1). p47 interaction with these proteins was further confirmed by coimmunoprecipitation assays and colocalization in HeLa cells transfected with p47-green fluorescent fusion protein (AcGFP1-p47). Moreover, confocal microscopy demonstrated p47-expressing dense-cored (DC) ehrlichiae colocalized with PCGF5, FYN, PTPN2, and CAP1. An amino-terminally truncated form of p47 containing TRs interacted only with PCGF5 and not with FYN, PTPN2, and CAP1, indicating differences in p47 domains that are involved in these interactions. These results demonstrate that p47 is involved in a complex network of interactions involving numerous host cell proteins. Furthermore, this study provides a new insight into the molecular and functional distinction of DC ehrlichiae, as well as the effector proteins involved in facilitating ehrlichial survival in mononuclear phagocytes.Human monocytotropic ehrlichiosis is an emerging lifethreatening tick-borne zoonosis caused by the obligately intracellular gram-negative bacterium Ehrlichia chaffeensis. E. chaffeensis exhibits tropism for mononuclear phagocytes, replicates within cytoplasmic vacuoles that have early endosomal characteristics, and survives by evading and/or suppressing the activation of innate host defenses (4,22,23). Escape of phagocyte killing involves modulation of numerous host cell processes, but the ehrlichial effector proteins involved in the cellular reprogramming strategy to create a permissive host are currently undefined.E. chaffeensis has two morphologically characterized types: a small dense-cored (DC) form characterized by a dense nucleoid and a large replicating form, the reticulate cell (RC), that has uniformly dispersed nucleoid filaments (33). DC ehrlichiae attach and enter the host cell, undergoing rapid transformation to the RC that replicates and matures to the DC form within 3 days (33, 51). The molecular characteristics that distinguish DC from RC forms are not well defined; however, differential expression of two well-characterized immunoreactive tandem repeat (TR) proteins, p120 and p47, on the surface of the DC cells and extracellularly within the ehrlichial endocytic vacuole has been demonstrated (12, 34).Some of the molecularly ...
Ehrlichia chaffeensis is an obligately intracellular bacterium that modulates host cell gene transcription in the mononuclear phagocyte, but the host gene targets and mechanisms involved in transcriptional modulation are not well-defined. In this study, we identified a novel tandem repeat DNA-binding domain in the E. chaffeensis 120-kDa tandem repeat protein (TRP120) that directly binds host cell DNA. TRP120 was observed by immunofluorescent microscopy in the nucleus of E. chaffeensis-infected host cells and was detected in nuclear extracts by Western immunoblotting with TRP120-specific antibody. The TRP120 binding sites and associated host cell target genes were identified using high-throughput deep sequencing (Illumina) of immunoprecipitated DNA (chromatin immunoprecipitation and high-throughput DNA sequencing). Multiple em motif elicitation (MEME) analysis of the most highly enriched TRP120-bound sequences revealed a G؉C-rich DNA motif, and recombinant TRP120 specifically bound synthetic oligonucleotides containing the motif. TRP120 target gene binding sites were mapped most frequently to intersecting regions (intron/exon; 49%) but were also identified in upstream regulatory regions (25%) and downstream locations (26%). Genes targeted by TRP120 were most frequently associated with transcriptional regulation, signal transduction, and apoptosis. TRP120 targeted inflammatory chemokine genes, CCL2, CCL20, and CXCL11, which were strongly upregulated during E. chaffeensis infection and were also upregulated by direct transfection with recombinant TRP120. This study reveals that TRP120 is a novel DNA-binding protein that is involved in a host gene transcriptional regulation strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.