Landslides, floods, and droughts are recurring natural disasters in Nepal related to too much or too little water. The summer monsoon contributes more than 80% of annual rainfall, and rainfall spatial and inter-annual variation is very high. The Gandaki River, one of the three major rivers of Nepal and one of the major tributaries of the Ganges River, covers all agro-ecological zones in the central part of Nepal. Time series tests were applied for different agro-ecological zones of the Gandaki River Basin (GRB) for rainfall trends of four seasons (pre-monsoon, monsoon, post-monsoon and winter) from 1981 to 2012.
OPEN ACCESSClimate 2015, 3
211The non-parametric Mann-Kendall and Sen's methods were used to determine the trends. Decadal anomalies relative to the long-term average were analyzed using the APHRODITE precipitation product. Trends in number of rainy days and timing of the monsoon were also analyzed. We found that the post-monsoon, pre-monsoon and winter rainfalls are decreasing significantly in most of the zones but monsoon rainfall is increasing throughout the basin. In the hill region, the annual rainfall is increasing but the rainy days do not show any trend. There is a tendency toward later departure of monsoon from Nepal, indicating an increase in its duration. These seasonally and topographically variable trends may have significant impacts for the agriculture and livestock smallholders that form the majority of the population in the GRB.
This paper presents temporal and spatial pattern of drought phenomena in central Nepal using standardized precipitation index (SPI) at multiple time scales. The study is based on 32 years of monthly precipitation data from 40 meteorological stations from 1981 to 2012. Results indicate that, while there is no distinct trend in regional precipitation, interannual variation is large. Trend analysis of drought index shows that most stations are characterized by increases in both severity and frequency of drought and trend is stronger for longer drought time scales. Over the study period, the summer
123Nat Hazards (2016) 80:1913-1932 DOI 10.1007/s11069-015-2055 season of 2004, 2005, 2006, 2009 and winters 2006, 2008 and 2009 were the worst widespread droughts. These dry periods have a serious impact on agriculture-livestock production of central Nepal. Better understanding of these SPI dynamics could help in understanding the characteristics of droughts and also to develop effective mitigation strategies.
Abstract:Global climate change has local implications. Focusing on datasets from the topographicallychallenging Karnali river basin in Western Nepal, this research provides an overview of hydro-climatic parameters that have been observed during 1981-2012. The spatial and temporal variability of temperature and precipitation were analyzed in the basin considering the seven available climate stations and 20 precipitation stations distributed in the basin. The non-parametric Mann-Kendall test and Sen's method were used to study the trends in climate data. Results show that the average precipitation in the basin is heterogeneous, and more of the stations trend are decreasing. The precipitation shows decreasing trend by 4.91 mm/year, i.e., around 10% on average. Though the increasing trends were observed in both minimum and maximum temperature, maximum temperature trend is higher than the minimum temperature and the maximum temperature trend during the pre-monsoon season is significantly higher (0.08˝C/year). River discharge and precipitation observations were analyzed to understand the rainfall-runoff relationship. The peak discharge (August) is found to be a month late than the peak precipitation (July) over the basin. Although the annual precipitation in most of the stations shows a decreasing trend, there is constant river discharge during the period 1981-2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.