Three-point semidefinite programming bounds are one of the most powerful
known tools for bounding the size of spherical codes. In this paper, we use
them to prove lower bounds for the potential energy of particles interacting
via a pair potential function. We show that our bounds are sharp for seven
points in RP^2. Specifically, we prove that the seven lines connecting opposite
vertices of a cube and of its dual octahedron are universally optimal. (In
other words, among all configurations of seven lines through the origin, this
one minimizes energy for all potential functions that are completely monotonic
functions of squared chordal distance.) This configuration is the only known
universal optimum that is not distance regular, and the last remaining
universal optimum in RP^2. We also give a new derivation of semidefinite
programming bounds and present several surprising conjectures about them.Comment: 30 page
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.