If fire breaks out on an airplane, a large amount of fire extinguishing agents should be discharged within a very short time. For effective fire extinguishing, increased discharge velocity of the fire extinguishing agents is required. This can be achieved by using a large-sized vessel in which the fire extinguishing agents are highly pressurized by noncombustible gases. It is important to understand the flow characteristics of a fire extinguishing system for optimal system design. This study reports a numerical analysis of the flow characteristics of an airplane fire extinguishing system using halon-1301 as a fire extinguishing agent. The unsteady flow model was simulated with the general-purpose software package "FLUENT", to study the flow characteristics of the fire extinguishing agents in the system. The effects of the rupture surface area and tube diameter on the flow characteristics were investigated for optimal system design. From the analysis results, it was clarified that the characteristics of the halon discharge from the end of tube are very sensitive to the rupture surface area and significantly affected by the tube diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.