Background Recent advances in rapid imaging techniques necessitate the reconsideration of the optimal imaging delay time for contrast-enhanced T1-weighted imaging. The aim of our study was to determine the optimal contrast-enhanced T1-weighted imaging delay time from the obtained time-signal intensity curve (TIC) using gadobutrol in patients with brain metastases, primary brain tumors, and meningiomas. Methods This prospective study enrolled 78 patients with brain metastases (n = 39), primary brain tumors (n = 22), or meningiomas (n = 17) who underwent 7-min dynamic contrast-enhanced imaging with single-dose gadobutrol. Based on the time-to-peak (TTP) derived from the TIC, we selected four different time points for analysis. Lesion conspicuity, enhanced rate (ER) and contrast rate (CR) of 116 index lesions were evaluated. Statistical comparisons were made for the four different time points using the Friedman test. Results Maximum TTP (305.20 ± 63.47 s) was similar across all three groups (p = 0.342). Lesion conspicuity, CR and ER increased over time in all index lesions; however, no significant difference between the 5- and 7-min images was observed. The longest diameter in all groups differed significantly among time points (p < 0.001); the perpendicular diameter did not differ between the 5- and 7-min images. Conclusions Maximum contrast enhancement and lesion conspicuity was achieved 5–7 min after a single gadobutrol injection for brain metastases detection and for primary brain tumor/meningioma evaluation. Acquiring images 5 min after gadobutrol injection is the optimal timing for brain tumor detection during MRI work-up.
Background: Recent advances in rapid imaging techniques necessitate the reconsideration of the optimal imaging delay time for contrast-enhanced T1-weighted imaging. The aim of our study was to determine the optimal contrast-enhanced T1-weighted imaging delay time from the obtained time-signal intensity curve (TIC) using gadobutrol in patients with brain metastases, primary brain tumors, and meningiomas. Methods: This prospective study enrolled 78 patients with brain metastases (n=39), primary brain tumors (n=22), or meningiomas (n=17) who underwent 7-minute dynamic contrast-enhanced imaging with single-dose gadobutrol. Based on the time-to-peak (TTP) derived from the TIC, we selected four different time points for analysis. Lesion conspicuity, enhanced rate (ER) and contrast rate (CR) of 116 index lesions were evaluated. Statistical comparisons were made for the four different time points using the Friedman test.Results: Maximum TTP (305.20 ± 63.47 s) was similar across all three groups (p=0.342). Lesion conspicuity, CR and ER increased over time in all index lesions; however, no significant difference between the 5- and 7-min images was observed. The longest diameter in all groups differed significantly among time points (p<0.001); the perpendicular diameter did not differ between the 5- and 7-min images. Conclusions: Maximum contrast enhancement and lesion conspicuity was achieved 5–7 min after a single gadobutrol injection for brain metastases detection and for primary brain tumor/meningioma evaluation. Acquiring images 5 min after gadobutrol injection is the optimal timing for brain tumor detection during MRI work-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.