The objective of this research was to study the mechanical properties of epoxy/glass/nanoclay hybrid composites. Nanomer 1.30E nanoclay (0—6 wt%) was initially dispersed into epoxy using ultrasonication and the hybrid nanocomposite was fabricated using hand lay-up technique. Mechanical properties such as ultimate tensile strength, Young’s modulus, flexural strength, flexural modulus, interlaminar shear strength, and microhardness of the hybrid composites increased with increase in nanoclay loading up to 5 wt%. Glass transition temperature increased marginally at 2 wt% nanoclay loading and the same decreased for further addition of the filler. The tensile-fractured specimens were studied to examine the mode of failure using scanning electron microscope.
This paper presents results of the processing of nanocomposites based on epoxy and nanofillers, namely multiwalled carbon nanotubes (up to 10 wt%) and carbon black (up to 15 wt%). The twin screw extruded nanocomposites showed increases in electrical and thermal conductivities, tensile strength, microhardness and glass transition temperature. Electrical conductivity increased on the order of 10 11 at 10 wt% of nanotubes loading and at 15 wt% of carbon black. Greater increases in thermal and mechanical properties were observed in cases of nanotube-dispersed composites more so than others. SEM and AFM were used to examine the dispersion of the fillers.
This paper presents the experimental results of dispersing multiwalled carbon nanotubes (MWNTs) into epoxy (space grade structural adhesive) nanocomposites using co-rotating twin screw extrusion process. Two sets of specimens were prepared; set 1 with ultrasonication for predispersing MWNT before extrusion and set 2 direct dispersion of MWNT in the extruder. MWNT was loaded up to 8 vol.% in both the sets. The specimens were characterized for room temperature volume and surface resistivities as per ASTM D257 using Keithley Model 6517 and for thermal conductivity in the temperature range 250 to 150°C as per ASTM E 1530 using Thermal Conductivity Instrument (TCI) 2022 SX211. The volume resistivity of sets 1 and 2 decreased to an extent of 10 11 and 10 9 respectively. The surface resistivity drop was of the order of 10 9 for both the sets. These drops corresponded to the maximum MWNT loading of 8 vol.%. Electrical conductivity values of the specimens were fitted into the Power Law Model to evaluate the critical exponent. Both sets 1 and 2 showed increase in thermal conductivity with increase in temperature in the testing range. Thermal conductivity increased with increase in filler loading and the maximum increase was 60% at 150°C in case of 8 vol.% MWNT nanocomposites for set 1. The corresponding value for the set 2 was 25%. Thermal conductivity values were predicted using Lewis Nielson model. DSC of the specimens showed increase in glass transition temperature with increase in filler loading. The dispersion of the nanofillers was studied using SEM and the surface morphology using AFM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.