The MS2-MCP system allows imaging multiple steps of the mRNA life cycle with high temporal and spatial resolution. However for short-lived mRNAs, the tight binding of the MS2 coat protein (MCP) to the MS2 binding sites (MBS) protects the RNA from being efficiently degraded, confounding the study of mRNA regulation. Here, we describe a reporter system (MBSV6) with reduced affinity for the MCP, allowing mRNA degradation while preserving single molecule detection determined by smFISH or live imaging. Constitutive mRNAs (MDN1 and DOA1) or highly-regulated mRNAs (GAL1 and ASH1) endogenously tagged with MBSV6 in S. cerevisiae degrade normally. As a result, rapidly turning over mRNAs were imaged throughout their complete life cycle. MBSV6 provided single molecule detection in live mammalian cells. The MBSV6 reporter revealed that coordinated recruitment of mRNAs at specialized structures such as P-bodies during stress did not occur and that degradation was heterogeneously distributed in the cytoplasm.
Recent advancements in single-cell and single-molecule imaging technologies have resolved biological processes in time and space that are fundamental to understanding the regulation of gene expression. Observations of single-molecule events in their cellular context have revealed highly dynamic aspects of transcriptional and post-transcriptional control in eukaryotic cells. This approach can relate transcription with mRNA abundance and lifetimes. Another key aspect of single-cell analysis is the cell-to-cell variability among populations of cells. Definition of heterogeneity has revealed stochastic processes, determined characteristics of under-represented cell types or transitional states, and integrated cellular behaviors in the context of multicellular organisms. In this review, we discuss novel aspects of gene expression of eukaryotic cells and multicellular organisms revealed by the latest advances in single-cell and single-molecule imaging technology.
The IGF2 mRNA-binding proteins (ZBP1/IMP1, IMP2, IMP3) are highly conserved post-transcriptional regulators of RNA stability, localization and translation. They play important roles in cell migration, neural development, metabolism and cancer cell survival. The knockout phenotypes of individual IMP proteins suggest that each family member regulates a unique pool of RNAs, yet evidence and an underlying mechanism for this is lacking. Here, we combine systematic evolution of ligands by exponential enrichment (SELEX) and NMR spectroscopy to demonstrate that the major RNA-binding domains of the two most distantly related IMPs (ZBP1 and IMP2) bind to different consensus sequences and regulate targets consistent with their knockout phenotypes and roles in disease. We find that the targeting specificity of each IMP is determined by few amino acids in their variable loops. As variable loops often differ amongst KH domain paralogs, we hypothesize that this is a general mechanism for evolving specificity and regulation of the transcriptome.
Translation is the fundamental biological process that converts the genetic information in messenger RNAs (mRNAs) into functional proteins. Translation regulation allows cells to control when, where, and how many proteins are synthesized. Much of what we know about translation comes from ensemble approaches that measure the average of many cells. The cellular and molecular heterogeneity in the regulation of translation remains largely elusive. Fluorescence microscopy allows interrogation of biological problems with single-molecule, single-cell sensitivity. In recent years, improved design of reagents and microscopy tools has led to improved spatial and temporal resolution of translation imaging. It is now possible to track global translation in specific subcellular compartments and follow the translation dynamics of single transcripts. Highlighted here is the recent progress in translation imaging with emphasis on in vivo translation dynamics. These tools will be invaluable to the study of translation regulation.
The Igf2 mRNA binding proteins (ZBP1/IMP1, IMP2, IMP3) are highly conserved posttranscriptional regulators of RNA stability, localization and translation. They play important roles in cell migration, neural development, metabolism and cancer cell survival. The knockout phenotypes of individual IMP proteins suggest that each family member regulates a unique pool of RNAs, yet evidence and an underlying mechanism for this is lacking. Here, we combine SELEX and NMR spectroscopy to demonstrate that the major RNA binding domains of the two most distantly related IMPs (ZBP1 and IMP2) bind to different consensus sequences and regulate targets consistent with their knockout phenotypes and roles in disease. We find that the targeting specificity of each IMP is determined by few amino acids in their variable loops. As variable loops often differ amongst KH domain paralogs, we hypothesize that this is a general mechanism for evolving specificity and regulation of the transcriptome.3 Introduction:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.