Over the past few years, innovation in the development of Wireless Sensor Networks (WSNs) has evolved rapidly. WSNs are being used in many application fields such as target coverage, battlefield surveillance, home security, health care supervision, and many more. However, power usage in WSNs remains a challenging issue due to the low capacity of batteries and the difficulty of replacing or charging them, especially in harsh environments. Therefore, this has led to the development of various architectures and algorithms to deal with optimizing the energy usage of WSNs. In particular, extending the lifetime of the WSN in the context of target coverage problems by resorting to intelligent scheduling has received a lot of research attention. In this paper, we propose a scheduling technique for WSN based on a novel concept within the theory of Learning Automata (LA) called pursuit LA. Each sensor node in the WSN is equipped with an LA so that it can autonomously select its proper state, i.e., either sleep or active with the aim to cover all targets with the lowest energy cost. Through comprehensive experimental testing, we verify the efficiency of our algorithm and its ability to yield a near-optimal solution. The results are promising, given the low computational footprint of the algorithm.
With the proliferation of technologies such as wireless sensor networks (WSNs) and the Internet of things (IoT), we are moving towards the era of automation without any human intervention. Sensors are the principal components of the WSNs that bring the idea of IoT into reality. Over the last decade, WSNs are being used in many application fields such as target coverage, battlefield surveillance, home security, health care monitoring, and so on. However, the energy efficiency of the sensor nodes in WSN remains a challenging issue due to the use of a small battery. Moreover, replacing the batteries of the sensor nodes deployed in a hostile environment frequently is not a feasible option.Therefore, intelligent scheduling of the sensor nodes for optimizing its energy-efficient operation and thereby extending the life-time of WSN has received a lot of research attention lately. In particular, this article investigates extending the lifetime of the WSN in the context of target coverage problems. To tackle this problem, we propose a scheduling technique for WSN based on a novel concept within the theory of learning automata (LA) called pursuit LA. Each sensor node in the WSN is equipped with an LA so that it can autonomously select its proper state, that is, either sleep or active, with an aim to cover all targets with the lowest energy cost possible. Our comprehensive experimental testing of the proposed algorithm not only verifies the efficiency of our algorithm, but it also demonstrates its ability to yield a near-optimal solution. The results are promising, given the low computational footprint of the algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.