In this paper, different machine learning and tabular learning classification algorithms have been studied and compared on the acute hand-gesture Electromyogram dataset. The comparative study between different models such as KNN, RandomForest, TabNet, etc. depicts that small datasets can achieve high-level accuracy along with the intuition of high-performing neural net architectures through tabular learning approaches like TabNet. The performed analysis produced an accuracy of 99.9% through TabNet while other conventional classifiers also gave satisfactory results with KNN being at highest achieving accuracy of 97.8 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.