Clinical-radiologic correlation study yields four distinct subgroups: anteromedial, anterolateral, combined, and lateral. Large vessel disease and small vessel disease are usual pathogenic mechanisms, whereas cardiogenic embolism is rare.
Smartphones have penetrated rapidly and mobile shopping provides promising market opportunities for retailers. However, little is known about mobile shopping patterns and inferring these patterns from online shopping may provide misleading insights. We combine mobile log data and a mobile panel survey, and examine two stages in mobile shopping: the possession of shopping applications (hereafter, apps) and the purchase via shopping apps. Our exploratory investigation of mobile data and its empirical analyses provide three substantive findings. First, online experience and mobile experience both positively relate to the possession of shopping apps. Second, browsing behavior for non-shopping apps helps understand the possession of shopping apps as it reflects user preferences for acquiring more apps. Third, purchasing decisions are explained by digital experience (i.e., online experience and mobile experience) and browsing information from shopping apps, with other factors being of little predictive value. The implications for mobile retailing research and practice are discussed.
We evaluated whether the inhibitory effects of vascular endothelial growth factor (VEGF)-targeted drugs on the proliferation of cancer cells differed according to VEGF receptor (VEGFR) genes, Flt1 and KDR, promoter methylation status. Five hyper-VEGFR-methylation and six no-VEGFR-methylation cancer cells were used for the present study, together with human umbilical endothelial cells (HUVECs) as a control. No-VEGFR-methylation cancer cells showed higher expression of Flt1 and KDR than hyper-VEGFR-methylation cancer cells. Hyper-VEGFR-methylation cancer cells only showed increased expression and protein levels of Flt1 and KDR after treatment with the demethylase 5-aza-2'-deoxycytidine. Two drugs (a VEGF-specific-antibody, bevacizumab, and a KDR-specific-antibody) targeting extracellular VEGF-VEGFR signaling and two VEGF-specific-tyrosine kinase inhibitors (PTK/ZK and sunitinib) targeting intracellular VEGFR signaling were used in the cell proliferation assay. HUVECs showed dose- and time-dependent proliferation decrease with all tested drugs over a 72 h incubation period. No- or hyper-VEGFR-methylation cancer cells showed no significant proliferation differences after treatment with VEGF-specific-antibody or VEGFR2-specific-antibody. After PTK/ZK or sunitinib treatment, no-VEGFR-methylation cancer cells showed dose- or time-dependent decreases in proliferation. Hyper-VEGFR-methylation cancer cells also showed proliferation inhibition by VEGF-specific-tyrosine kinase inhibitors after demethylation of Flt1 and KDR. Proliferation inhibition synergistically increased after combination of demethylation with PTK/ZK in hyper-VEGF-methylation cancer cells. We observed that intracellular targeting of VEGF-VEGFR signaling could be more effective than extracellular targeting of the pathway in the suppression of proliferation of some cancer cells. In particular, the efficacy of intracellular targeting of VEGF-specific-tyrosine kinase inhibitors might be influenced by the epigenetic alteration of VEGFRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.