The effect of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class is studied by a strong disorder renormalization group approach and by density matrix renormalization group calculations. We show that for sufficiently strong disorder the critical behavior is controlled by a strong disorder fixed point and in one dimension the critical exponents are conjectured to be exact: beta=(3-sqrt[5])/2 and nu( perpendicular )=2. For disorder strengths outside the attractive region of this fixed point, disorder dependent critical exponents are detected. Existing numerical results in two dimensions can be interpreted within a similar scenario.
Quenched disorder -in the sense of the Harris criterion -is generally a relevant perturbation at an absorbing state phase transition point. Here using a strong disorder renormalization group framework and effective numerical methods we study the properties of random fixed points for systems in the directed percolation universality class. For strong enough disorder the critical behavior is found to be controlled by a strong disorder fixed point, which is isomorph with the fixed point of random quantum Ising systems. In this fixed point dynamical correlations are logarithmically slow and the static critical exponents are conjecturedly exact for one-dimensional systems. The renormalization group scenario is confronted with numerical results on the random contact process in one and two dimensions and satisfactory agreement is found. For weaker disorder the numerical results indicate static critical exponents which vary with the strength of disorder, whereas the dynamical correlations are compatible with two possible scenarios. Either they follow a power-law decay with a varying dynamical exponent, like in random quantum systems, or the dynamical correlations are logarithmically slow even for weak disorder. For models in the parity conserving universality class there is no strong disorder fixed point according to our renormalization group analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.