This article addresses the utilization of cross-linked phenylboronic-acid polymers for fructose separation from glucose–fructose mixtures focusing particularly on structure-sorption relationships.
The carbonized character of covalent triazine frameworks (CTF), based on two different synthesis approaches, is described and tailored for liquid-phase adsorption processes.
The essential amino acid lysine is of great importance in the nutrition and pharmaceutical industries and is mainly produced in biorefineries by the fermentation of glucose. In biorefineries, downstream processing is often the most energy‐consuming step. Adsorption on hydrophobic adsorbents represents an energy, resource, and cost‐saving alternative. The results reported herein provide insights into the selective separation of
l
‐lysine from aqueous solution by liquid‐phase adsorption using tailored activated carbons. A variety of commercial activated carbons with different textural properties and surface functionalities is investigated. Comprehensive adsorbent characterization establishes structure–adsorption relationships that define the major roles of the specific surface area and oxygen functionalities. A 13‐fold increase of the separation of lysine and glucose is achieved through systematic modification of a selected activated carbon by oxidation, and lysine adsorption is enhanced by 30 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.