Driven by the ever-increasing pace
of drug discovery and the need
to push the boundaries of unexplored chemical space, medicinal chemists
are routinely turning to unusual strained bioisosteres such
as bicyclo[1.1.1]pentane, azetidine, and cyclobutane to modify their
lead compounds. Too often, however, the difficulty of installing these
fragments surpasses the challenges posed even by the construction
of the parent drug scaffold. This full account describes the development
and application of a general strategy where spring-loaded, strained
C–C and C–N bonds react with amines to allow for the
“any-stage” installation of small, strained ring systems.
In addition to the functionalization of small building blocks and
late-stage intermediates, the methodology has been applied to bioconjugation
and peptide labeling. For the first time, the stereospecific strain-release
“cyclopentylation” of amines, alcohols, thiols,
carboxylic acids, and other heteroatoms is introduced. This report
describes the development, synthesis, scope of reaction, bioconjugation,
and synthetic comparisons of four new chiral “cyclopentylation”
reagents.
The discovery and optimization of potency and metabolic stability of a novel class of dihyroxyphenylisoindoline amides as Hsp90 inhibitors are presented. Optimization of a screening hit using structure-based design and modification of log D and chemical structural features led to the identification of a class of orally bioavailable non-quinone-containing Hsp90 inhibitors. This class is exemplified by 14 and 15, which possess improved cell potency and pharmacokinetic profiles compared with the original screening hit.
The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The syntheses of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles have been achieved from a simple common intermediate. Several ortho- and meta-substituted benzene analogs, as well as simple molecular matched pairs, have also been prepared using this platform. The results of in-depth ADME (absorption, distribution, metabolism, and excretion) investigations of these systems are presented, as well as computational studies which validate the ortho- or meta-character of these bioisosteres.
<p>The development of a versatile platform for the synthesis of 1,2-difunctionalized bicyclo[1.1.1]pentanes to potentially mimic ortho/meta-substituted arenes is described. The synthesis of useful building blocks bearing alcohol, amine, and carboxylic acid functional handles has been achieved from a simple common intermediate. Several ortho and/or meta-substituted benzene analogues as well as simple molecular matched pairs have also been prepared using this platform. In-depth biological and computational studies are currently in progress to validate the ortho and/or meta-character of these new bioisosteres. Results of these investigations will be reported in due course.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.