Blenheim is a small Palaeocene oil field ( c. 53 × 10 6 BBL oil in-place), in which significant seismic uncertainty complicated a development decision. Initial appraisal plans required a conventional deviated well sited to minimize the uncertainty, gather further reservoir and fluid data, and, if successful, provide a production well. Later studies indicated improved economics if horizontal wells were successful. Several well designs, with and without pilot holes, were analysed to discover the optimum balance of data gathering, risk reduction and development cost reduction. The optimum well required accurate well steering in an area of seismic uncertainty. A high-resolution biostratigraphic study was made and provided detailed correlation of intra-reservoir mudstones, enabling wellsite analysis to aid steering decisions. The pilot hole proved the most likely seismic interpretation to be correct and permitted the horizontal well to be drilled as planned. Wellsite biostratigraphic analysis and real-time MWD aided steering decisions and contributed to a successful horizontal well being drilled. The well flowed in excess of the minimum economic rates required and allowed the field to be successfully developed.
Why are the only commercial hydrocarbon discoveries in Lower Triassic and Permian sediments of the western margin of Australia restricted to the Perth Basin and the Petrel Sub-basin? Recent regional analysis by Carnarvon Petroleum has sought to address some key questions about the Lower Triassic Locker Shale and Upper Permian Chinty and Kennedy formations petroleum systems along the shallow water margin of the Carnarvon and offshore Canning (Roebuck/Bedout) basins. This paper aims to address the following questions:Source: Is there evidence in the wells drilled to date of a working petroleum system tied to the Locker Shale or other pre-Jurassic source rocks? Reservoir: What is the palaeogeography and sedimentology of the stratigraphic units and what are the implications for the petroleum systems?The authors believed that a fresh look at the Lower Triassic to Upper Permian petroleum prospectivity of the North West Shelf would be beneficial, and key observations arising from the regional study undertaken are highlighted:Few wells along a 2,000 km area have drilled into Lower Triassic Locker Shale or older stratigraphy. Several of these wells have been geochemically and isotopically typed to potentially non Jurassic source rocks. The basal Triassic Hovea Member of the Kockatea Shale in the Perth Basin is a proven commercial oil source rock and a Hovea Member Equivalent has been identified through palynology and a distinctive sapropelic/algal kerogen facies in nearly 16 wells that penetrate the full Lower Triassic interval on the North West Shelf. Samples from the Upper Permian, the Hovea Member Equivalent and the Locker Shale have been analysed isotopically indicating –28, –34 and –30 delta C13 averages, respectively. Lower Triassic and Upper Permian reservoirs are often high net to gross sands with up to 1,000 mD permeability and around 20% porosity. Depositional processes are varied, from Locker Shale submarine canyon systems to a mixed carbonate clastic marine coastline/shelf of the Upper Permian Chinty and Kennedy formations.
The Lower to Middle Triassic mixed carbonate–clastic system in the Northern Carnarvon Basin is poorly understood relative to the stratigraphically younger Jurassic play systems. Few well penetrations and a lack of quality seismic data have deterred exploration of this interval for many years. In recent times, the Lower to Middle Triassic source potential has been comprehensively de-risked within the Roebuck Basin, with subsequent implications across the entire North West Shelf of Australia, opening up the possibility of an entirely new regional play fairway. This paper focuses on the Candace Terrace, on the southern flank of the Carnarvon Basin, where seismic observations and interpretations of Lower to Middle Triassic submarine canyon systems have been made. The stratigraphic elements of this play interval can now be more clearly observed with the aid of 3D seismic data. Amplitude extractions show the internal geometries of these highly erosive systems are sinuous, compensating flows. The aims of this paper are to postulate the stratigraphy of the Lower to Middle Triassic on the Candace Terrace, highlight the tectonic cause of the canyon systems and discuss the prospectivity of the observed turbidite features.
The East Spar gas condensate field is located in production licence WA-13-L in the offshore Carnarvon Basin. Production commenced in 1996 with two subsea wells linked to processing facilities on Varanus Island via a multi-phase pipeline. The pressure performance of the field has been significantly different to predevelopment expectations. This prompted a reexamination of the seismic and well data to investigate the potential for alternative reservoir models.Integrated stratigraphic and seismic interpretation reveals that the Barrow Group reservoir sands were deposited within an incised valley of limited lateral extent. Sea level fall instigated erosion of a valley that on transgression was filled with successive fluvial, estuarine and marine sediments. Good quality sands are expected to be limited to this valley, the upper part of which can be mapped on seismic. Poor sand development in East Spar–2ST is consistent with its location at the edge of the incised valley.Before development, the primary production mechanism was expected to be a strong bottom water drive comparable with other Barrow Group fields in the Carnarvon Basin. The revised depositional model, however, and the observed decline in reservoir pressure, indicate that connection to this regional aquifer is limited. This implies that water influx will probably be later, and ultimate recovery higher, than previously anticipated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.