Human breast cancer is usually caused by genetic alterations of somatic cells of the breast, but occasionally, susceptibility to the disease is inherited. Mapping the genes responsible for inherited breast cancer may also allow the identification of early lesions that are critical for the development of breast cancer in the general population. Chromosome 17q21 appears to be the locale of a gene for inherited susceptibility to breast cancer in families with early-onset disease. Genetic analysis yields a lod score (logarithm of the likelihood ratio for linkage) of 5.98 for linkage of breast cancer susceptibility to D17S74 in early-onset families and negative lod scores in families with late-onset disease. Likelihood ratios in favor of linkage heterogeneity among families ranged between 2000:1 and greater than 10(6):1 on the basis of multipoint analysis of four loci in the region.
• Over 30% of patients with unexplained cytopenias who do not meet diagnostic criteria for MDS carry MDS-associated somatic mutations.• Clonal cytopenias of undetermined significance are more common than MDS and show comparable variant allele frequencies and blood counts.Establishing a diagnosis in patients suspected of having a myelodysplastic syndrome (MDS) can be challenging and could be informed by the identification of somatic mutations. We performed a prospective study to examine the frequency and types of mutations encountered in 144 patients with unexplained cytopenias. Based on bone marrow findings, 17% were diagnosed with MDS, 15% with idiopathic cytopenias of undetermined significance (ICUS) and some evidence of dysplasia, and 69% with ICUS and no dysplasia. Bone marrow DNA was sequenced for mutations in 22 frequently mutated myeloid malignancy genes. Somatic mutations were identified in 71% of MDS patients, 62% of patients with ICUS and some dysplasia, and 20% of ICUS patients and no dysplasia. In total, 35% of ICUS patients carried a somatic mutation or chromosomal abnormality indicative of clonal hematopoiesis. We validated these results in a cohort of 91 lower-risk MDS and 249 ICUS cases identified over a 6-month interval. Mutations were found in 79% of those with MDS, in 45% of those with ICUS with dysplasia, and in 17% of those with ICUS without dysplasia. The spectrum of mutated genes was similar with the exception of SF3B1 which was rarely mutated in patients without dysplasia. Variant allele fractions were comparable between clonal ICUS (CCUS) and MDS as were mean age and blood counts. We demonstrate that CCUS is a more frequent diagnosis than MDS in cytopenic patients. Clinical and mutational features are similar in these groups and may have diagnostic utility once outcomes in CCUS patients are better understood. (Blood. 2015;126(21):2355-2361 IntroductionMyelodysplastic syndromes (MDS) are clonal bone marrow disorders characterized by inefficient and dysmorphic hematopoietic differentiation, cytopenias of the peripheral blood, and increased risk of transformation to acute myeloid leukemia (AML).1 Establishing a diagnosis of MDS in a cytopenic patient is often challenging as the bone marrow must demonstrate dysplasia in 10% or more of a myeloid cell lineage or a blast proportion of 5% or greater.2 Quantification of these features can be subjective and prone to wide interobserver variation even among expert hematopathologists. 3,4 In cases that do not meet either bone marrow criteria, the presence of certain clonal karyotype abnormalities typical for MDS can serve as presumptive evidence of the diagnosis.2 Finally, other neoplasms and nonclonal causes of cytopenias must also be reasonably excluded. Many patients with otherwise unexplained cytopenias will fail to meet the diagnostic criteria for MDS and instead carry a designation of idiopathic cytopenias of undetermined significance (ICUS). 5-7The natural history of patients with ICUS is largely unknown and appears to be highly variable. Sma...
A detailed behavioral analysis of water-maze acquisition showed that the N-methyl-D-aspartate (NMDA) antagonist NPC17742 and the muscarinic antagonist scopolamine caused sensorimotor disturbances in behaviors required for maze performances and that these correlated with acquisition impairments in both hidden and visible platform versions of the maze in male rats. Behavioral disturbances included thigmotaxic swimming, swimming over and deflecting off the platform, abnormal swim behavior, and hyperactivity. Rats familiar with the behavioral strategies involved in the task performed normally under NPC17742 or scopolamine. The results indicated that drug-induced sensorimotor disturbances contributed to poor acquisition scores in naive rats. NMDA or muscarinic activity may contribute to but do not appear to be essential for spatial learning in the water maze.
Although next-generation sequencing has allowed for the detection of somatic mutations in myelodysplastic syndromes (MDS), the clinical relevance of variant allele frequency (VAF) for the majority of mutations is unknown. We profiled TP53 and 20 additional genes in our training set of 219 patients with MDS or secondary acute myeloid leukemia with findings confirmed in a validation cohort. When parsed by VAF, TP53 VAF predicted for complex cytogenetics in both the training (P=0.001) and validation set (P<0.0001). MDS patients with a TP53 VAF > 40% had a median overall survival (OS) of 124 days versus an OS that was not reached in patients with VAF <20% (hazard ratio (HR), 3.52; P=0.01) with validation in an independent cohort (HR, 4.94, P=0.01). TP53 VAF further stratified distinct prognostic groups independent of clinical prognostic scoring systems (P=0.0005). In multivariate analysis, only a TP53 VAF >40% was an independent covariate (HR, 1.61; P<0.0001). In addition, SRSF2 VAF predicted for monocytosis (P=0.003), RUNX1 VAF with thrombocytopenia (P=0.01) and SF3B1 with ringed sideroblasts (P=0.001). Together, our study indicates that VAF should be incorporated in patient management and risk stratification in MDS.
Multimodal MRI reveals diverging structural and functional connectivity profiles across the TLE spectrum. Pathology-specific modulations of large-scale functional brain networks lend novel evidence for a close interplay of structural and functional disruptions in focal epilepsy. Ann Neurol 2016;80:142-153.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.